906 resultados para Thermoelectric power plants
Resumo:
Mode of access: Internet.
Resumo:
"November 21, 1991" -- Pt. 2.
Resumo:
Mode of access: Internet.
Resumo:
"January 1990."
Resumo:
Hearings held: May 10-July 19, 1979.
Resumo:
Mineral wool insulation material applied to the primary cooling circuit of a nuclear reactor maybe damaged in the course of a loss of coolant accident (LOCA). The insulation material released by the leak may compromise the operation of the emergency core cooling system (ECCS), as it maybe transported together with the coolant in the form of mineral wool fiber agglomerates (MWFA) suspensions to the containment sump strainers, which are mounted at the inlet of the ECCS to keep any debris away from the emergency cooling pumps. In the further course of the LOCA, the MWFA may block or penetrate the strainers. In addition to the impact of MWFA on the pressure drop across the strainers, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. Therefore, it is essential to understand the transport characteristics of the insulation materials in order to determine the long-term operability of nuclear reactors, which undergo LOCA. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz1 is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effects that particles formed due to corrosion of metallic containment internals by the coolant medium have on the strainer pressure drop. The focus of this presentation is on the numerical models that are used to predict the transport of MWFA by CFD simulations in the containment sump. Two dispersed phases were conditions to determine the influence of entrained air from a jet on the transport of fibre agglomerates through the sump. The strainer model of A. Grahn was implemented to observe the impact that the accumulation of the fibres have on the pressure drop across the strainers. The geometry considered is similar to the containment sump configurations found in Nuclear Power Plants.
Resumo:
Biorefineries are expected to play a major role in a future low carbon economy and substantial investments are being made to support this vision. However, it is important to consider the wider socio-economic impacts of such a transition. This paper quantifies the potential trade, employment and land impacts of economically viable European biorefinery options based on indigenous straw and wood feedstocks. It illustrates how there could be potential for 70-80 European biorefineries, but not hundreds. A single facility could generate tens of thousands of man-years of employment and employment creation per unit of feedstock is higher than for biomass power plants. However, contribution to national GDP is unlikely to exceed 1% in European member states, although contributions to national agricultural productivity may be more significant, particularly with straw feedstocks. There is also a risk that biorefinery development could result in reduced rates of straw incorporation into soil, raising concerns that economically rational decisions to sell rather than reincorporate straw could result in increased agricultural land-use or greenhouse gas emissions. © 2013.
Resumo:
Polycrystalline zirconium nitride (ZrN) samples were irradiated with He +, Kr ++, and Xe ++ ions to high (>1·10 16 ions/cm 2) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nanoindentation. Nanoindentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples.
Resumo:
Orimulsion400 is a new generation of the Orimulsion formula. This new generation is a more environmentally friendly, cost-effective energy source. This article describes the product's evolution as well as test results from diverse power plants.
Resumo:
In the majority of production processes, noticeable amounts of bad byproducts or bad outputs are produced. The negative effects of the bad outputs on efficiency cannot be handled by the standard Malmquist index to measure productivity change over time. Toward this end, the Malmquist-Luenberger index (MLI) has been introduced, when undesirable outputs are present. In this paper, we introduce a Data Envelopment Analysis (DEA) model as well as an algorithm, which can successfully eliminate a common infeasibility problem encountered in MLI mixed period problems. This model incorporates the best endogenous direction amongst all other possible directions to increase desirable output and decrease the undesirable outputs at the same time. A simple example used to illustrate the new algorithm and a real application of steam power plants is used to show the applicability of the proposed model.
Resumo:
Today, focus is shifting to creation of bio-energy, biofuel and bioproducts from cellulosic biomass derived from various sources, including existing and new crops and their residues, trees and forest residues, and municipal or industrial wastes. At present, biomass co-firing in modern coal power plants with efficiencies up to 45% is the most cost-effective biomass use for power generation. Due to feedstock availability issues, dedicated biomass plants for combined heat and power (CHP), are typically of smaller size and lower electrical efficiency compared to coal plants. The financial model discussed in the chapter is suitable for all countries both in the West and in the developing world. From the economic analysis given in the chapter it can be concluded that intermediate pyrolysis technology proves to be very effective in terms of product qualities of the oil produced and also the return on investment is around 4 to 5 years.
Resumo:
A description and model of the near-surface hydrothermal system at Casa Diablo, with its implications for the larger-scale hydrothermal system of Long Valley, California, is presented. The data include resistivity profiles with penetrations to three different depth ranges, and analyses of inorganic mercury concentrations in 144 soil samples taken over a 1.3 by 1.7 km area. Analyses of the data together with the mapping of active surface hydrothermal features (fumaroles, mudpots, etc.), has revealed that the relationship between the hydrothermal system, surface hydrothermal activity, and mercury anomalies is strongly controlled by faults and topography. There are, however, more subtle factors responsible for the location of many active and anomalous zones such as fractures, zones of high permeability, and interactions between hydrothermal and cooler groundwater. In addition, the near-surface location of the upwelling from the deep hydrothermal reservoir, which supplies the geothermal power plants at Casa Diablo and the numerous hot pools in the caldera with hydrothermal water, has been detected. The data indicate that after upwelling the hydrothermal water flows eastward at shallow depth for at least 2 km and probably continues another 10 km to the east, all the way to Lake Crowley.
Resumo:
Based on the possibility of real-time interaction with three-dimensional environments through an advanced interface, Virtual Reality consist in the main technology of this work, used in the design of virtual environments based on real Hydroelectric Plants. Previous to the process of deploying a Virtual Reality System for operation, three-dimensional modeling and interactive scenes settings are very importante steps. However, due to its magnitude and complexity, power plants virtual environments generation, currently, presents high computing cost. This work aims to present a methodology to optimize the production process of virtual environments associated with real hydroelectric power plants. In partnership with electric utility CEMIG, several HPPs were used in the scope of this work. During the modeling of each one of them, the techiniques within the methodologie were addressed. After the evaluation of the computional techniques presented here, it was possible to confirm a reduction in the time required to deliver each hydroelectrical complex. Thus, this work presents the current scenario about development of virtual hydroelectric power plants and discusses the proposed methodology that seeks to optimize this process in the electricity generation sector.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.
As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.
To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.
To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.
Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.
The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.
Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.