902 resultados para Texture géométrique
Resumo:
Grain misorientation was studied in relation to the nearest neighbor's mutual distance using electron back-scattered diffraction measurements. The misorientation correlation function was defined as the probability density for the occurrence of a certain misorientation between pairs of grains separated by a certain distance. Scale-invariant spatial correlation between neighbor grains was manifested by a power law dependence of the preferred misorientation vs. inter-granular distance in various materials after diverse strain paths. The obtained negative scaling exponents were in the range of -2 +/- 0.3 for high-angle grain boundaries. The exponent decreased in the presence of low-angle grain boundaries or dynamic recrystallization, indicating faster decay of correlations. The correlations vanished in annealed materials. The results were interpreted in terms of lattice incompatibility and continuity conditions at the interface between neighboring grains. Grain-size effects on texture development, as well as the implications of such spatial correlations on texture modeling, were discussed.
Resumo:
State-of-the-art image-set matching techniques typically implicitly model each image-set with a Gaussian distribution. Here, we propose to go beyond these representations and model image-sets as probability distribution functions (PDFs) using kernel density estimators. To compare and match image-sets, we exploit Csiszar´ f-divergences, which bear strong connections to the geodesic distance defined on the space of PDFs, i.e., the statistical manifold. Furthermore, we introduce valid positive definite kernels on the statistical manifold, which let us make use of more powerful classification schemes to match image-sets. Finally, we introduce a supervised dimensionality reduction technique that learns a latent space where f-divergences reflect the class labels of the data. Our experiments on diverse problems, such as video-based face recognition and dynamic texture classification, evidence the benefits of our approach over the state-of-the-art image-set matching methods.
Resumo:
It has been said that we are living in a golden age of innovation. New products, systems and services aimed to enable a better future, have emerged from novel interconnections between design and design research with science, technology and the arts. These intersections are now, more than ever, catalysts that enrich daily activities for health and safety, education, personal computing, entertainment and sustainability, to name a few. Interactive functions made possible by new materials, technology, and emerging manufacturing solutions demonstrate an ongoing interplay between cross-disciplinary knowledge and research. Such interactive interplay bring up questions concerning: (i) how art and design provide a focus for developing design solutions and research in technology; (ii) how theories emerging from the interactions of cross-disciplinary knowledge inform both the practice and research of design and (iii) how research and design work together in a mutually beneficial way. The IASDR2015 INTERPLAY EXHIBITION provides some examples of these interconnections of design research with science, technology and the arts. This is done through the presentation of objects, artefacts and demonstrations that are contextualised into everyday activities across various areas including health, education, safety, furniture, fashion and wearable design. The exhibits provide a setting to explore the various ways in which design research interacts across discipline knowledge and approaches to stimulate innovation. In education, Designing South African Children’s Health Education as Generative Play (A Bennett, F Cassim, M van der Merwe, K van Zijil, and M Ribbens) presents a set of toolkits that resulted from design research entailing generative play. The toolkits are systems that engender pleasure and responsibility, and are aimed at cultivating South African’s youth awareness of nutrition, hygiene, disease awareness and prevention, and social health. In safety, AVAnav: Avalanche Rescue Helmet (Jason Germany) delivers an interactive system as a tool to contribute to reduce the time to locate buried avalanche victims. Helmet-mounted this system responds to the contextual needs of rescuers and has since led to further design research on the interface design of rescuing devices. In apparel design and manufacturing, Shrinking Violets: Fashion design for disassembly (Alice Payne) proposes a design for disassembly through the use of beautiful reversible mono-material garments that interactively responds to the challenges of garment construction in the fashion industry, capturing the metaphor for the interplay between technology and craft in the fashion manufacturing industry. Harvest: A biotextile future (Dean Brough and Alice Payne), explores the interplay of biotechnology, materiality and textile design in the creation of sustainable, biodegradable vegan textile through the process of a symbiotic culture of bacteria and yeast (SCOBY). SCOBY is a pellicle curd that can be harvested, machine washed, dried and cut into a variety of designs and texture combinations. The exploration of smart materials, wearable design and micro-electronics led to creative and aesthetically coherent stimulus-reactive jewellery; Symbiotic Microcosms: Crafting Digital Interaction (K Vones). This creation aims to bridge the gap between craft practitioner and scientific discovery, proposing a move towards the notion of a post-human body, where wearable design is seen as potential ground for new human-computer interactions, affording the development of visually engaging multifunctional enhancements. In furniture design, Smart Assistive chair for older adults (Chao Zhao) demonstrates how cross-disciplinary knowledge interacting with design strategies provide solution that employed new technological developments in older aged care, and the participation of multiple stakeholders: designers, health care system and community based health systems. In health, Molecular diagnosis system for newborns deafness genetic screening (Chao Zhao) presents an ambitious and complex project that includes a medical device aimed at resolving a number of challenges: technical feasibility for city and rural contexts, compatibility with standard laboratory and hospital systems, access to health system, and support the work of different hospital specialists. The interplay between cross-disciplines is evident in this work, demonstrating how design research moves forward through technology developments. These works exemplify the intersection between domains as a means to innovation. Novel design problems are identified as design intersects with the various areas. Research informs this process, and in different ways. We see the background investigation into the contextualising domain (e.g. on-snow studies, garment recycling, South African health concerns, the post human body) to identify gaps in the area and design criteria; the technologies and materials reviews (e.g. AR, biotextiles) to offer plausible technical means to solve these, as well as design criteria. Theoretical reviews can also inform the design (e.g. play, flow). These work together to equip the design practitioner with a robust set of ‘tools’ for design innovation – tools that are based in research. The process identifies innovative opportunity and criteria for design and this, in turn, provides a means for evaluating the success of the design outcomes. Such an approach has the potential to come full circle between research and design – where the design can function as an exemplar, evidencing how the research-articulated problems can be solved. Core to this, however, is the evaluation of the design outcome itself and identifying knowledge outcomes. In some cases, this is fairly straightforward that is, easily measurable. For example the efficacy of Jason Germany’s helmet can be determined by measuring the reduced response time in the rescuer. Similarly the improved ability to recycle Payne’s panel garments can be clearly determined by comparing it to those recycling processes (and her identified criteria of separating textile elements!); while the sustainability and durability of the Brough & Payne’s biotextile can be assessed by documenting the growth and decay processes, or comparative strength studies. There are however situations where knowledge outcomes and insights are not so easily determined. Many of the works here are open-ended in their nature, as they emphasise the holistic experience of one or more designs, in context: “the end result of the art activity that provides the health benefit or outcome but rather, the value lies in the delivery and experience of the activity” (Bennet et al.) Similarly, reconfiguring layers of laser cut silk in Payne’s Shrinking Violets constitutes a customisable, creative process of clothing oneself since it “could be layered to create multiple visual effects”. Symbiotic Microcosms also has room for facilitating experience, as the work is described to facilitate “serendipitous discovery”. These examples show the diverse emphasis of enquiry as on the experience versus the product. Open-ended experiences are ambiguous, multifaceted and differ from person to person and moment to moment (Eco 1962). Determining the success is not always clear or immediately discernible; it may also not be the most useful question to ask. Rather, research that seeks to understand the nature of the experience afforded by the artefact is most useful in these situations. It can inform the design practitioner by helping them with subsequent re-design as well as potentially being generalizable to other designers and design contexts. Bennett et. al exemplify how this may be approached from a theoretical perspective. This work is concerned with facilitating engaging experiences to educate and, ultimately impact on that community. The research is concerned with the nature of that experience as well, and in order to do so the authors have employed theoretical lenses – here these are of flow, pleasure, play. An alternative or complementary approach to using theory, is using qualitative studies such as interviews with users to ask them about what they experienced? Here the user insights become evidence for generalising across, potentially revealing insight into relevant concerns – such as the range of possible ‘playful’ or experiences that may be afforded, or the situation that preceded a ‘serendipitous discovery’. As shown, IASDR2015 INTERPLAY EXHIBITION provides a platform for exploration, discussion and interrogation around the interplay of design research across diverse domains. We look forward with excitement as IASDR continues to bring research and design together, and as our communities of practitioners continue to push the envelope of what is design and how this can be expanded and better understood with research to foster new work and ultimately, stimulate innovation.
Resumo:
Microstructure and microtexture evolution during static annealing of a hot-extruded AZ21 magnesium alloy was studied. Apart from fine recrystallized equiaxed grains and large elongated deformed grains, a new third kind of abnormal grains that are stacked one after the other in a row parallel to the extrusion direction were observed. The crystallographic misorientation inside these grains was similar to that of the fine recrystallized grains. The large elongated grains exhibited significant in-grain misorientation. A self-consistent mechanistic model was developed to describe the formation of these grain morphologies during dynamic recrystallization (DRX). The texture of pre-extruded material, although lost in DRX, leaves a unique signature which manifests itself in the form of these grain morphologies. The origin of abnormal stacked grains was associated with slow nucleation in pre-extruded grains of a certain orientation. Further annealing resulted in large secondary recrystallized grains with occasional extension twins. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Feature track matrix factorization based methods have been attractive solutions to the Structure-front-motion (Sfnl) problem. Group motion of the feature points is analyzed to get the 3D information. It is well known that the factorization formulations give rise to rank deficient system of equations. Even when enough constraints exist, the extracted models are sparse due the unavailability of pixel level tracks. Pixel level tracking of 3D surfaces is a difficult problem, particularly when the surface has very little texture as in a human face. Only sparsely located feature points can be tracked and tracking error arc inevitable along rotating lose texture surfaces. However, the 3D models of an object class lie in a subspace of the set of all possible 3D models. We propose a novel solution to the Structure-from-motion problem which utilizes the high-resolution 3D obtained from range scanner to compute a basis for this desired subspace. Adding subspace constraints during factorization also facilitates removal of tracking noise which causes distortions outside the subspace. We demonstrate the effectiveness of our formulation by extracting dense 3D structure of a human face and comparing it with a well known Structure-front-motion algorithm due to Brand.
Resumo:
In this paper, we demonstrate a way to impart severe plastic deformation to magnesium at room temperature to produce ultrafine grain size of similar to 250 nm through equal channel angular extrusion (ECAE). The strategy to deform magnesium at lower temperature or to achieve such grain sizes has been proposed as: (i) to obtain a suitable initial orientation with high Schmid factor for basal slip and low Schmid factor for pyramidal/prismatic slip; (ii) to take advantage of low stacking fault energy of basal and high stacking fault energies of prismatic/pyramidal planes in order to relatively work-harden the basal plane with respect to the pyramidal/prismatic plane; and (iii) to lower the temperature of deformation in steps, leading to continual refinement of grains, resulting in finer grain size. The experimental as well as simulated texture of ECAE-processed samples indicate that the deformation mechanism leading to ultrafine grain size is slip-dominated. The recrystallization mechanism during ECAE has been found to be orientation-dependent. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Kirjallisuuskatsauksessa käsiteltiin viiliä hapanmaitotuotteena, viilin arviointimenetelmiä sekä viilihapatteissa käytettyjen hapatekantojen vaikutuksia maidossa ja niiden vuorovaikutuksia toisiinsa. Lisäksi pohdittiin viilihapatteiden bakteriofaageja, niiden ehkäisyä sekä solunsisäisiä että -ulkoisia faagiresistenssimekanismeja. Kokeellisessa osassa tutkittiin, onko nykyisten tuotantohapatteiden koostaminen yksittäiskannoista mahdollista, sekä koostettiin uusista Lactococcus lactis ssp. cremoris -kannoista varahapate. Hapatteiden käyttökelpoisuutta tutkittiin rakennemittauksin ja aistinvaraisin menetelmin. Varahapatteen faagikestävyyttä testattiin valmistamalla viiliä ja infektoimalla viilit faaginäytteillä. Hapatekannat viljeltiin fermentorissa, konsentroitiin sentrifugoimalla ja pakastettiin –75 °C:ssa. Hapatteet koostettiin noin 1 päivä ennen viilin valmistusta. Viilit arvioitiin aistinvaraisesti 3–6 hengen ryhmässä ja viileille tehtiin rakennemittaukset (kiinteys, sakeus ja koossapysyvyys) sekä kemialliset analyysit. Aistinvaraisen arvioinnin tulokset käsiteltiin tilastollisesti ja tulosten perusteella tehtiin uudet kantakombinaatiot ja viilit. Tuotantohapatekannoilla valmistetut viilit arvioitiin kolmitestillä (n = 10–11) ja uusilla kannoilla valmistetut viilit arvioitiin profiilitestillä (n = 8). Lisäksi viileille tehtiin rakennemittaukset ja kemialliset analyysit. Varahapatekoosteilla valmistettujen viilien pH laski 4,5:een faagin läsnäollessa 0–10 tunnin viiveellä verrattuna faagivapaisiin viileihin, kun taas tuotantohapatteet eivät hapantuneet faagin läsnäollessa. Aromintuottajat eivät kasvaneet viileissä kunnolla, kun hapate koostettiin yksittäiskannoista. Kolmitestissä ei erotettu nykyisillä tuotantohapatteilla valmistettua viiliä yksittäin koostetusta hapatteesta, eli hapatteita on mahdollista koostaa yksittäiskannoista. Varahapatteilla koostetut viilit poikkesivat profiilitestissä tuotantohapatteella koostetusta viilistä ulkonäkö- ja rakenneominaisuuksiltaan. Makuominaisuuksien suhteen ei viilien välille saatu eroa.
Resumo:
A hot rolled two-phase Ti-22Al-25Nb (at.%) alloy containing the orthorhombic (O) and beta(B2) phases was subjected to thermal treatment under different conditions. The experiment was aimed to examine the recrystallization response of the beta(B2) phase (static and dynamic) to microstructure and crystallographic texture evolution using scanning electron microscopy coupled with electron backscattered diffraction (SEM-EBSD). Specimens rolled in the two-phase (O + beta(B2)) region consisted of highly deformed beta(B2) grains. The texture was close to that of the typical bcc deformation texture with a few additional texture components. A subsequent heat treatment of these rolled specimens in single beta(B2) phase region was characterized by static recrystallized beta(B2) grains with the final texture partly inherited from as-rolled material. In contrast, specimens rolled in the single beta(B2) region produced beta(B2) grains with the texture similar to that of completely dynamic recrystallized one. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al–Mg alloy, viz., continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al-Mg alloy, viz.,continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We propose two texture-based approaches, one involving Gabor filters and the other employing log-polar wavelets, for separating text from non-text elements in a document image. Both the proposed algorithms compute local energy at some information-rich points, which are marked by Harris' corner detector. The advantage of this approach is that the algorithm calculates the local energy at selected points and not throughout the image, thus saving a lot of computational time. The algorithm has been tested on a large set of scanned text pages and the results have been seen to be better than the results from the existing algorithms. Among the proposed schemes, the Gabor filter based scheme marginally outperforms the wavelet based scheme.
Resumo:
The increasing use of 3D modeling of Human Face in Face Recognition systems, User Interfaces, Graphics, Gaming and the like has made it an area of active study. Majority of the 3D sensors rely on color coded light projection for 3D estimation. Such systems fail to generate any response in regions covered by Facial Hair (like beard, mustache), and hence generate holes in the model which have to be filled manually later on. We propose the use of wavelet transform based analysis to extract the 3D model of Human Faces from a sinusoidal white light fringe projected image. Our method requires only a single image as input. The method is robust to texture variations on the face due to space-frequency localization property of the wavelet transform. It can generate models to pixel level refinement as the phase is estimated for each pixel by a continuous wavelet transform. In cases of sparse Facial Hair, the shape distortions due to hairs can be filtered out, yielding an estimate for the underlying face. We use a low-pass filtering approach to estimate the face texture from the same image. We demonstrate the method on several Human Faces both with and without Facial Hairs. Unseen views of the face are generated by texture mapping on different rotations of the obtained 3D structure. To the best of our knowledge, this is the first attempt to estimate 3D for Human Faces in presence of Facial hair structures like beard and mustache without generating holes in those areas.
Resumo:
Extraction of text areas from the document images with complex content and layout is one of the challenging tasks. Few texture based techniques have already been proposed for extraction of such text blocks. Most of such techniques are greedy for computation time and hence are far from being realizable for real time implementation. In this work, we propose a modification to two of the existing texture based techniques to reduce the computation. This is accomplished with Harris corner detectors. The efficiency of these two textures based algorithms, one based on Gabor filters and other on log-polar wavelet signature, are compared. A combination of Gabor feature based texture classification performed on a smaller set of Harris corner detected points is observed to deliver the accuracy and efficiency.
Resumo:
Multimedia mining primarily involves, information analysis and retrieval based on implicit knowledge. The ever increasing digital image databases on the Internet has created a need for using multimedia mining on these databases for effective and efficient retrieval of images. Contents of an image can be expressed in different features such as Shape, Texture and Intensity-distribution(STI). Content Based Image Retrieval(CBIR) is an efficient retrieval of relevant images from large databases based on features extracted from the image. Most of the existing systems either concentrate on a single representation of all features or linear combination of these features. The paper proposes a CBIR System named STIRF (Shape, Texture, Intensity-distribution with Relevance Feedback) that uses a neural network for nonlinear combination of the heterogenous STI features. Further the system is self-adaptable to different applications and users based upon relevance feedback. Prior to retrieval of relevant images, each feature is first clustered independent of the other in its own space and this helps in matching of similar images. Testing the system on a database of images with varied contents and intensive backgrounds showed good results with most relevant images being retrieved for a image query. The system showed better and more robust performance compared to existing CBIR systems
Resumo:
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.