857 resultados para Textile finishing
Resumo:
Dissertação de mestrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado em Design e Comunicação de Moda
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Body composition analysis is relevant to characterize the nutritional requirements and finishing phase of fish. The aim of this study was to investigate the relationship between ichthyometric (weight, total and standard length, density and yields), bromatological (fat, protein, ash and water content) and bioelectrical-impedance-analysis (BIA) (resistance, reactance, phase angle and composition indexes) variables in the hybrid tambatinga (Colossoma macropomum × Piaractus brachypomus). In a non-fertilized vivarium, 520 juveniles were housed and fed commercial rations. Then, 136 days after hatching (DAH), 15 fish with an average weight of 37.69 g and average total length of 12.96 cm were randomly chosen, anesthetized (eugenol) and subjected to the first of fourteen fortnightly assessments (BIA and biometry). After euthanasia, the following parts were weighed: whole carcass with the head, fillet, and skin (WC); fillet with skin (FS); and the remainder of the carcass with the head (CH). Together, FS and CH were ground and homogenized for the bromatological analyses. Estimates of the body composition and yields of tambatinga, with models including ichthyometric and BIA variables, showed correlation coefficients ranging from 0.81 (for the FS yield) to 1,00 (for the total ash). Similarly, models that included only BIA variables had correlation coefficients ranging from 0.81 (FS and CH yields) to 0.98 (for the total ash). Therefore, in tambatinga, the BIA technique allows the estimation of the yield of the fillet with skin and the body composition (water content, fat, ash, and protein). The best models combine ichthyometric and BIA variables.
Resumo:
Silk fibroin is a commonly available natural biopolymer produced in specialized glands of arthropods, such as silkworms or spiders, scorpions, mites, bees and flies. This biopolymer has a long history of use in textile production and also as sutures or treatment of skin wounds. Silk fibroin has been increasingly explored in other areas of biomedical science where we can find a higher morphological diversification of silk biomaterials like films, electrospun fibers, 3D porous scaffolds or nanoparticles. In recent years it has been demonstrated that fibroin is an excellent material for active components in optical devices. This new application opens the way towards the development of multifunctional optoelectronic devices, which in perspective can be made fully biocompatible and eventually bioresorbable. Moreover, fibroin can be added to other biocomponents in order to modify the biomaterial properties leading to optimized and total different functions. These improvements can go from higher cell adhesion in tissue engineering or enhanced optical transparency, smoothness or flexibility in optoelectronic devices. The tuning and completely understanding of silk fibers physicochemical properties and interaction with other elements are of crucial importance for the improvement of already existent silk-based materials and the basis for the development of new products.
Resumo:
Silk fibroin (SF) is a commonly available natural biopolymer produced in specialized glands of arthropods, with a long history of use in textile production and also in health cares. The exceptional intrinsic properties of these fibers, such as self-assembly, machinability, biocompatibility, biodegradation or non-toxicity, offer a wide range of exciting opportunities [1]. It has long been recognized that silk can be a rich source of inspiration for designing new materials with tailored properties, enhanced performance and high added value for targeted applications, opening exciting new prospects in the domain of materials science and related technological fields, including bio-friendly integration, miniaturization and multifunctionalization. In recent years it has been demonstrated that fibroin is an excellent material for active components in optics and photonics devices. Progress in new technological fields such as optics, photonics and electronics are emerging [2,3]. The incorporation of polymer electrolytes as components of various devices (advanced batteries, smart windows, displays and supercapacitors) offers significant advantages with respect to traditional electrolytes, including enhanced reliability and improved safety. SF films are particularly attractive in this context. They have near-perfect transparency across the VIS range, surface flatness (together with outstanding mechanical robustness), ability to replicate patterned substrates and their thickness may be easily tailored from a few nanometers to hundreds of micrometers through spin-casting of a silk solution into subtract. Moreover, fibroin can be added to other biocomponents or salts in order to modify the biomaterial properties leading to optimized and total different functions. Preliminary tests performed with a prototype electrochromic device (ECD) incorporating SF films doped with lithium triflate and lithium tetrafluoroborate (LiTFSI and LiBF4, respectively) as electrolyte and WO3 as cathodic electrochromic layer, are extremely encouraging. Aiming to evaluate the performance of the ion conducting SF membranes doped with LiTFSI and LiBF4 (SF-Li), small ECDs with glass/ITO/WO3/SF-Li/CeO2-TiO2/ITO/glass configuration were assembled and characterized. The device exhibited, after 4500 cycles, the insertion of charge at -3.0 V reached –1.1 mC.cm-2 in 15 s. After 4500 cycles the window glass-staining, glass/ITO/WO3/Fibrin-Li salts electrolyte/CeO2-TiO2/ITO/glass configuration was reversible and featured a T 8 % at λ = 686 nm
Resumo:
Tese de Doutoramento em Sociologia
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado em Design e Marketing
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica
Resumo:
Tese de Doutoramento em Ciências (Especialidade de Geologia)
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Tese de Doutoramento Engenharia Têxtil