936 resultados para Tartrate-resistant
Resumo:
The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.
Resumo:
Resumen tomado de la publicación
Resumo:
Pollution by toxic compounds is one of the most relevant environmental damages to ecosystems produced by human activity and, therefore, it must be considered in environmental protection and restoration of contaminated sites. According to this purposes, the main goal of this doctoral thesis has been to analyse the impact of several chlorophenols and heavy metals on the microbial communities of two typical Mediterranean soils. The ecological risk concentrations of each pollutant, which have been determined according to respirometric activity and changes in the microbial community composition, and the factors that influence on their effective toxic concentrations (bioavailable pollutants) have been analysed in order to predict their potential impact on different soil ecosystems and provide scientific data for the regulation of the soil protection policies. Moreover, resistant microorganisms with pollutant removal capacities have been isolated from artificially contaminated soil microcosms and tested in axenic cultures, to infer their potential usefulness for bioremediation.
Resumo:
We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.
Resumo:
We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.
Resumo:
In a field experiment the effects of Sumicidin (super) 5EC (fenitrothion), Metasystox EC25 (oxydemeton-methyl) and Tamaron SL600 (methamidophos), applied at different dosages, were evaluated against peach-potato aphid, Myzus persicae (Sulzer) and its parasitoid Aphidius matricariae Haliday on Cardinal and Desiree (respectively partially resistant and susceptible potato cultivars to M. persicae). Sumicidin (super) 5EC was found about 30% more effective in reducing aphid populations than the other insecticides tested. The highest doses of each insecticide caused maximum aphid mortality; in general aphid mortality appeared dose dependent. Almost all the higher and lower doses of the tested insecticides were about 19% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with second highest dose on Cardinal as with the highest dose on Desiree. Also the same control level was achieved at the lowest dosage rate on Cardinal compared with the next higher dose on the Desiree. Sumicidin (super) 5EC was found least toxic to the parasitoid, A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging female parasitoids; increase of about 22, 67 and 47% respectively were found in parasitoid performance with Tamaron SL600 which was found comparatively highly toxic. The highest doses of all insecticides were found clearly toxic to the parasitoid. In general, effects on the parasitoid were dose dependent. Maximum yield was obtained from the second highest dose of Sumicidin (super) 5EC.
Resumo:
Field studies were conducted in Pakistan to examine the effects and the interaction of two differentially resistant potato cultivars i.e. Cardinal and Desiree (one partially resistant and one susceptible to Myzus persicae (Sulzer), respectively) with different dosage rates of granular insecticides, at different time intervals after application in relation to percent kill of M. persicae and effects on the parasitoid Aphidius matricariae Haliday (i.e. the third trophic level) within the aphid mummies, percent parasitism and Thimet 10G (phorate) was found about 30% more effective in reducing aphid population than the Furadan 3G (carbofuran). The highest doses of each insecticide caused maximum aphid mortality, in general aphid mortality appeared dose dependent. Mostly all the higher and lower doses of the tested insecticides were about 10% more effective on Cardinal than on Desiree. The most significant result was the synergistic interaction at the lower doses with plant resistance, so that the same level of control was recorded with the second highest dose on Cardinal as with the highest dose on Desiree. Also the same level of control was observed at the lowest dose on Cardinal as with the second last lowest dose on Desiree. Furadan 3G was found least toxic to the A. matricariae in terms of percent parasitism, emergence of parasitoids and number of mature eggs in the emerging females. Furadan 3G gave 13, 15 and 6% higher figures, respectively from the parasitoid characteristics than Thimet 10G. The highest doses of both insecticides were clearly toxic to the parasitoid. In general, the effects on the parasitoid were dose dependent. The second highest dose of Thimet 10G, gave the maximum yield
Resumo:
We investigated the relationship between the severity and incidence of resistance among Norway rats (Rattus norvegicus) on a farm in Wales and the subsequent outcome of a practical rodent control operation. Bromadiolone resistance factors were estimated for rats trapped on the farm using the blood clotting response test, and were found to be 2 to 3 for male rats and approximately 6 for females. The incidence of resistance in the rat population was high. Infestation size was estimated by census baiting and tracking, and was found to be substantial, with a maximum of 6.5 kg of bait being eaten on a single night. A proprietary rodenticide (Deadline (TM)), containing 0.005% bromadiolone, was used to control the infestation. The duration of baiting was 35 days and, according to the two methods of assessment used, treatment success was in the region of 87 and 93%. No evidence was observed of a significant impact of resistance on the rat control operation, and the remaining rats of this very heavy infestation would probably have been controlled if baiting had continued for longer.
Resumo:
Polyculture is traditionally a low-input agricultural system and is important in many developing countries. Polycultures of interplanted crops often support fewer pests at lower densities than monoculture and tend to increase number of natural enemies. Also Yellow Sticky Plastic Sheet Traps have proved useful for trapping aphids. A field study was conducted to study the effectiveness of these potential pest management techniques along with the partially resistant (Cardinal) and susceptible (Desiree) potato cultivars, by using their different combinations for the management of Myzus persicae (Sulzer). Berseem, Trifolium alexandrinum (L.) (family: Leguminosae) was used for intercropping with potatoes. The different combinations (treatments) used in this study were: 1) Cardinal-berseem mixed cropping+yellow sticky plastic sheet traps 2) Cardinal-berseem mixed cropping 3) Cardinal+yellow sticky plastic sheet traps 4) Cardinal separately+berseem (as land area equivalents in relation to the mixed cropping treatments) 5) Cardinal (sole crop). Treatments 6-10 were the same treatments, but with Desiree as the potato cultivar. All these treatments were used to evaluate their effects as management techniques for M. persicae, their percent parasitism, percent emergence rate of the parasitoid, Aphidius matricariae Haliday and yield of Cardinal and Desiree. Mixed cropping of Cardinal and berseem together with the yellow sticky plastic sheet traps reduced aphids by over 90% compared with numbers on the sole Cardinal crop. This combination proved in this experiment the most effective for reducing the aphid populations as compared with all other treatments. Maximum percent parasitism i.e. 6.97 and 6.94% (almost double that in the other treatments) was recorded in the potato berseem mixed cropping, with and without traps respectively. In the same two treatments, yield was increased significantly as compared with all other treatments. However no significant effects of any of the variable was evident on the percent emergence of A. matricariae.
Resumo:
A novel series of polyaromatic ionomers with similar equivalent weights but very different sulphonic acid distributions along the ionomer backbone has been designed and prepared. By synthetically organising the sequence-distribution so that it consists of fully defined ionic segments (containing singlets, doublets or quadruplets of sulphonic acid groups) alternating strictly with equally well-defined nonionic spacer segments, a new class of polymers which may be described as microblock ionomers has been developed. These materials exhibit very different properties and morphologies from analogous randomly substituted systems. Progressively extending the nonionic spacer length in the repeat unit (maintaining a constant equivalent weight by increasing the degree of sulphonation. of the ionic segment) leads to an increasing degree of nanophase separation between hydrophilic and hydrophobic domains in these materials. Membranes cast from ionomers with the more highly phase-separated morphologies show significantly higher onset temperatures for uncontrolled swelling in water. This new type of ionomer design has enabled the fabrication of swelling-resistant hydrocarbon membranes, suitable for fuel cell operation, with very much higher ion exchange capacities (>2 meq g(-1)) than those previously reported in the literature. When tested in a fuel cell at high temperature (120 degrees C) and low relative humidity (35% RH), the best microblock membrane matched the performance of Nafion 112. Moreover, comparative low load cycle testing of membrane -electrode assemblies suggests that the durability of the new membranes under conditions of high temperature and low relative humidity is superior to that of conventional perfluorinated materials.
Resumo:
This study probed the possible effects of type III resistant starch (RS) crystalline polymorphism on RS fermentability by human gut microbiota and the short chain fatty acids production in vitro. Human fecal pH-controlled batch cultures showed RS induces an ecological shift in the colonic microbiota with polymorph B inducing Bifidobacterium spp. and polymorph A inducing Atopobium spp. Interestingly, polymorph B also induced higher butyrate production to levels of 0.79 mM. In addition, human gut simulation demonstrated that polymorph B promotes the growth of bifidobacteria in the proximal part of the colon and double their relative proportion in the microbiota in the distal colon. These findings suggest that RS polymorph B may promote large bowel health. While the findings are limited by study constraints, they do raise the possibility of using different thermal processing to delineate differences in the prebiotic capabilities of RS, especially its butryrogenicity in the human colon.
Resumo:
Resistant starch type 2 (RS2) and type 3 (RS3) containing preparations were digested using a batch (a) and a dynamic in vitro model (b). Furthermore, in vivo obtained indigestible fractions from ileostomy patients were used (c). Subsequently these samples were fermented with human feces with a batch and a dynamic in vitro method. The fermentation supernatants were used to treat CAC02 cells. Cytotoxicity, anti-genotoxicity against hydrogen peroxide (comet assay) and the effect on barrier function measured by trans-epithelial electrical resistance were determine. Dynamically fermented samples led to high cytotoxic activity, probably due to additional compounds added during in vitro fermentation. As a consequence only batch fermented samples were investigated further. Batch fermentation of RS resulted in an anti-genotoxic activity ranging from 9-30% decrease in DNA damage for all the samples, except for RS2-b. It is assumed that the changes in RS2 structures due to dynamic digestion resulted in a different fermentation profile not leading to any anti-genotoxic effect. Additionally, in vitro batch fermentation of RS caused an improvement in integrity across the intestinal barrier by approximately 22% for all the samples. We have demonstrated that batch in vitro fermentation of RS2 and RS3 preparations differently pre-digested are capable of inhibiting the initiation and promotion stage in colon carcinogenesis in vitro.
Resumo:
The diterpene isopimaric acid was extracted from the immature cones of Pinus nigra (Arnold) using bioassay. guided fractionation of a crude hexane extract. Isopimaric acid was assayed against multidrug-resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentrations (MIC) were 32-64 mu g/mL and compared with a commercially obtained resin acid, abietic acid, with MICs of 64 mu g/mL. Resin acids are known to have antibacterial activity and are valued in traditional medicine for their antiseptic properties: These results show that isopimaric acid is active against MDR an MRSA strains of S. aureus which are becoming, increasingly resistant to antibiotics. Both compounds were evaluated for modulation activity in combination with antibiotics, but did not potentiate the activity of the antibiotics tested. However, the compounds were also assayed in combination with the efflux pump inhibitor reserpine, to ice if inhibition of the TetK or NorA efflux pump increased their activity. Interestingly, rather than a potentiation of activity by a reduction in MIC, a two to four-fold increase in MIC was seen. It may he that isopimaric acid and abietic acid are not substrates for these efflux pumps, but it is also possible that an antagonistic interaction with reserpine may render the antibiotics inactive. H-1-NMR of abietic acid and reserpine taken individually and in combination, revealed a shift in resonance of some peaks for both compounds when mixed together compared with the spectra of the compounds on their own. It is proposed that this may he due to complex formation between abietic acid and reserpine and that this complex formation is responsible for a reduction in activity and elevation of MIC. Copyright (c) 2005 John Wiley & Sons, Ltd.