932 resultados para TRANSCRIPTIONAL REGULATION
Resumo:
Das Hauptziel dieser Arbeit war die Identifizierung der Regulationsebenen auf denen die TPA-induzierte Matrix-Metalloproteinase-9 (MMP-9) durch das nitrose Gas Stickstoffmonoxid (NO) in MCF-7-Zellen verändert wird. Dabei konnte sowohl mit Hilfe der Zymographie als auch mit einem MMP-9-Aktivitäts-ELISA gezeigt werden, dass die extrazellulären MMP-9-Spiegel durch die Behandlung der Zellen mit NO reduziert werden. Gleichzeitig zeigte sich auch eine durch NO bedingte Abnahme der intrazellulären MMP-9-Spiegel, wie mit Hilfe von Western-Blot-Analyse nachgewiesen werden konnte. Experimente mit dem Proteasominhibitor Lactacystin und dem Proteinsynthesehemmstoff Cycloheximid ließen darüber hinaus eine NO-bedingte Veränderung der MMP-9-Proteinstabilität ausschließen. Im Gegensatz dazu konnte mittels der metabolischen Markierung mit radioaktiv markiertem Methionin und Cystein gezeigt werden, dass die Proteinneusynthese der MMP-9 durch eine Behandlung der Zellen mit NO stark beeinträchtigt wird. In Übereinstimmung mit diesen Daten finden sich reduzierte MMP-9-mRNA-Spiegel auch in der polysomalen Zellfraktion von MCF-7-Zellen. Wie mit Hilfe des Transkriptionshemmstoffes Actinomycin D und durch Reportergenstudien mit hybriden MMP-9-Promotorkonstrukten gezeigt werden konnte, ist die NO-induzierte Reduktion der MMP-9-mRNA-Spiegel nicht auf eine Verringerung der MMP-9-mRNA-Stabilität zurückzuführen. Reportergenstudien mit einem 670bp langen Promotorfragment des 5’flankierenden Bereichs des humanen MMP-9-Gens zeigten jedoch auf, dass der hemmende Effekt des NOs zum Teil auf eine NO-vermittelte Abnahme der TPA-induzierten MMP-9-Promotoraktivität zurückgeführt werden kann. Demzufolge wurde in den nachfolgenden Experimenten nach den für die MMP-9-Expression notwendigen und von NO modulierten Transkriptionsfaktoren in MCF-7-Zellen gesucht. Anhand von Western-Blot-Analysen und Gelshiftanalysen konnte gezeigt werden, dass die Aktivität des Transkriptionsfaktors AP-1 in MCF-7-Zellen durch NO gehemmt wird, während weder die Expressionspiegel noch die Bindungsaffinität der Transkriptionsfaktoren NFκB und Sp1 durch die NO-Behandlung verändert sind. Weiterhin konnte unter Verwendung von pharmakologischen Inhibitoren der MAPK-Signalwege mit Hilfe der Western-Blot-Analyse nachgewiesen werden, dass MAPK-vermittelte Signalwege zwar für die Induktion der MMP-9-Expression essenziell sind, diese jedoch nicht von NO beeinflusst sind. Im Unterschied hierzu konnte mit Hilfe eines PKC-Aktivitätsassays gezeigt werden, dass die Gesamtaktivität von PKCs nach Behandlung von MCF-7-Zellen mit NO signifikant gehemmt ist. Zusammenfassend zeigen diese Untersuchungen, dass die NO-vermittelte Hemmung der TPA-induzierten MMP-9-Expression in MCF-7-Zellen im Wesentlichen auf eine NO-abhängige Reduktion der Protein-Kinase-C-Aktivität und einer daraus resultierenden Aktivitätshemmung des Transkriptionsfaktors AP-1 zurückgeführt werden kann.
Resumo:
Im Rahmen dieser Arbeit sollte der Einfluss des Mevalonatpfads auf die Expression von Selenoproteinen untersucht werden. Im Mevalonatpfad, einem universellen Stoffwechselweg eukaryontischer Zellen, entstehen neben Cholesterol auch verschiedene Isoprenoide, die z.B. für die post-transkriptionelle Modifikation der Selenocystein-tRNA herangezogen werden. Selenocystein ist funktioneller Bestandteil von Selenoproteinen, welche häufig in den Abbau von oxidativem Stress involviert sind. rnDer Mevalonatpfad wird hauptsächlich durch die HMG-CoA-Reduktase (HMGCR) reguliert. Pharmaka vom „Statin“-Typ gelten als wirkungsvolle kompetitive Inhibitoren dieses Enzyms und finden ihren Einsatz bei Patienten zur Behandlung von Hypercholesterolämie, welche eine Grundlage für vaskuläre Krankheiten bildet. Trotz der allgemein guten Verträglichkeit der Statine treten jedoch auch unerwünschte Nebeneffekte, wie Erhöhung der Leberenzyme oder Myopathien auf, deren biochemischer Hintergrund bislang noch im Dunkeln liegt. rnDie in dieser Arbeit durchgeführten Experimente belegen, dass Atorvastatin, Cerivastatin und Lovastatin in klinisch relevanten Dosen die Synthese bestimmter Selenoproteine, wie der Glutathionperoxidase (GPx), in klonalen humanen Hepatocyten post-transkriptionell unterdrücken, wodurch die Zellen anfälliger für oxidativen Stress in Form von Peroxiden werden. Dieser Mechanismus könnte eine Erklärung für die häufig beobachteten abnormen Leberwerte von Statin-behandelten Patienten darstellen.rnEndogenes Cholesterol gilt ebenfalls als potenter Inhibitor der HMGCR. Die in dieser Arbeit erzielten Ergebnisse zeigen, dass Cholesterol in verschiedenen Formen, als Low-Density-Lipoprotein (LDL), als 25-Hydroxycholesterol, und als Methylcyclodextrin-Komplex in unterschiedlichen humanen Zelltypen die Selenoproteinsynthese ebenfalls unterdrücken. Der negative Zusammenhang zwischen Cholesterol und bestimmten Selenoproteinen konnte auch in vivo beobachtet werden. In juvenilen Mäusen konnte gezeigt werden, dass ein Knockout des LDL-Rezeptors sowie auch ein Knockout von Apolipoprotein E zu einer Senkung des Lebercholesterols führte, was in einer Zunahme der GPx in der Leber resultierte.rnDie vorliegenden Daten belegen erstmals einen direkten und funktionellen Zusammenhang zwischen dem Mevalonatpfad und der Selenoproteinsynthese. Unterdrückung dieses Pfades, entweder durch exogene Substanzen wie Statine, oder durch endogene Substanzen wie Cholesterol, hat offenbar zur Folge, dass essentielle Zwischenprodukte für die Modifizierung der Selenocystein-tRNA fehlen, was in einer post-transkriptionellen Verminderung der induzierbaren Selenoproteine resultiert. Dies könnte die biochemische Grundlage für einen Teil der vielfältigen gesundheitlich negativen Auswirkungen schon geringfügig erhöhter Cholesterolspiegel sein.
Resumo:
Die mittlere Überlebenszeit nach Erkennung eines Glioblastoms ohne Behandlung liegt bei 3 Monaten und kann durch die Behandlung mit Temozolomid (TMZ) auf etwa 15 Monate gesteigert werden. Neben TMZ sind die chlorethylierenden Nitrosoharnstoffe die meistversprechendsten und am häufigsten eingesetzten Chemotherapeutika in der Gliomtherapie. Hier liegt die mittlere Überlebenszeit bei 17,3 Monaten. Um die Therapie des Glioblastoms noch effektiver zu gestalten und Resistenzen zu begegnen, werden unterschiedlichste Ansätze untersucht. Eine zentrale Rolle spielen hierbei das activator protein 1 (AP-1) und die mitogen aktivierten Proteinkinasen (MAPK), deren Funktion in bisherigen Arbeiten noch unzureichend beleuchtet wurde.rnBesonders mit der Rolle des AP-1-bildenden Proteins FRA-1 in der Therapie des Glioblastoms haben sich bisher nur wenige Arbeiten beschäftigt, weshalb im ersten Teil der vorliegenden Arbeit dessen Funktion in der Regulation der Chemosensitivität gegenüber dem chlorethylierenden Agenz ACNU genauer untersucht wurde. Es konnte gezeigt werden, dass die FRA 1-Expression durch Behandlung mit ACNU induziert wird. Die Induktion erfolgte über die beiden MAPKs ERK1/2 und p38K. JNK hatte keinen Einfluss auf die Induktion. Durch die Herunterregulation der FRA-1-Expression mit Hilfe von siRNA und eines shRNA exprimierenden Plasmids kam es zu einer signifikanten Sensitivierung gegenüber ACNU. Dabei konnte gezeigt werden, dass die Herunterregulation der FRA-1-Expression in einer verminderten AP 1-Bildung, bedingt durch eine reduzierte Menge an FRA-1 im AP-1-Komplex resultiert. Die Sensitivierung gegenüber ACNU ist weder durch eine Veränderung in der DNA-Reparatur, noch in der Modulation der FAS-Ligand- bzw. FAS-Rezeptor-Expression bedingt. Auch die hier untersuchten BCL 2-Familienmitglieder wiesen keine Unterschiede in der Expression durch Modulation der FRA 1-Expression auf. Allerdings kam es durch die verminderte FRA-1-Expression zu einer Reduktion der Zellzahl in der G2/M-Phase nach Behandlung mit ACNU. Diese ging einher mit einer reduzierten Menge an phosphoryliertem und unphosphoryliertem CHK1, weshalb davon auszugehen ist, dass FRA 1 nach ACNU-Behandlung in Gliomzellen vor der Apoptose schützt, indem es modulierend auf die Zellzykluskontrolle einwirkt.rnIm zweiten Teil dieser Arbeit wurde die Regulation der apoptotischen Antwort nach Behandlung mit ACNU und TMZ genauer beleuchtet, wobei ein spezielles Augen¬merk auf AP 1 und die MAPKs gelegt wurde. Hier konnte gezeigt werden, dass die Apoptose nach Behandlung mit ACNU bzw. TMZ sowohl durch Spaltung von Pro-Caspase 8, als auch Pro-Caspase 9 eingeleitet wird. Dabei akkumulierte in beiden Fällen p53 vermehrt im Zellkern. Eine Inhibierung der transkriptionellen Aktivität von p53 führte nach ACNU-Behandlung zu einer Sensitivierung der Zellen, nach TMZ-Behandlung kam es zu einem leichten Anstieg in der Vitälität. Der FAS-Rezeptor wurde nach ACNU- und nach TMZ-Behandlung aktiviert und auch die DNA-Reparaturproteine DDB2 und XPC wurden in beiden Fällen vermehrt exprimiert. Für die MAPKs JNK und ERK1/2 konnte gezeigt werden, dass diese pro-apoptotisch wirken. Die AP-1-Bildung nach ACNU-Behandlung erfolgte bereits nach 24 h und war von langer Dauer, wohingegen nach TMZ-Behandlung nur eine transiente AP 1-Bildung zu relativ späten Zeitpunkten detektiert werden konnte. Ebenso konnte für das AP-1-Zielgen FAS-Ligand nach ACNU-Behandlung eine relativ schnelle, lang anhaltende Aktivierung detektiert werden, wohingegen nach TMZ-Behandlung zu einem späten Zeitpunkt ein kurzer Anstieg im Signal zu verzeichnen war. In späteren Experimenten konnte gezeigt werden, dass das BCL-2-Familienmitglied BIM eine zentrale Rolle in der Regulation des intrinsischen Apoptosesignalweges nach Behandlung mit ACNU und TMZ spielt. Die hier entstanden Ergebnisse tragen entscheidend zum Verständnis der durch diese beiden Agenzien gesteuerten, apoptotischen Signalwege bei und bieten eine fundierte Grundlage für weitere Untersuchungen.rn
Regulation and structure of YahD, a copper-inducible / serine hydrolase of Lactococcus lactis IL1403
Resumo:
Lactococcus lactis IL1403 is a lactic acid bacterium that is used widely for food fermentation. Copper homeostasis in this organism chiefly involves copper secretion by the CopA copper ATPase. This enzyme is under the control of the CopR transcriptional regulator. CopR not only controls its own expression and that of CopA, but also that of an additional three operons and two monocistronic genes. One of the genes under the control of CopR, yahD, encodes an α/β-hydrolase. YahD expression was induced by copper and cadmium, but not by other metals or oxidative or nitrosative stress. The three-dimensional structure of YahD was determined by X-ray crystallography to a resolution of 1.88 Å. The protein was found to adopt an α/β-hydrolase fold with the characteristic Ser-His-Asp catalytic triad. Functional testing of YahD for a wide range of substrates for esterases, lipases, epoxide hydrolases, phospholipases, amidases and proteases was, however, unsuccessful. A copper-inducible serine hydrolase has not been described previously and YahD appears to be a new functional member of this enzyme family.
Resumo:
Sirtuins and hypoxia-inducible transcription factors (HIF) have well-established roles in regulating cellular responses to metabolic and oxidative stress. Recent reports have linked these two protein families by demonstrating that sirtuins can regulate the activity of HIF-1 and HIF-2. Here we investigated the role of SIRT1, a NAD+-dependent deacetylase, in the regulation of HIF-1 activity in hypoxic conditions. Our results show that in hepatocellular carcinoma (HCC) cell lines, hypoxia did not alter SIRT1 mRNA or protein expression, whereas it predictably led to the accumulation of HIF-1α and the up-regulation of its target genes. In hypoxic models in vitro and in in vivo models of systemic hypoxia and xenograft tumor growth, knockdown of SIRT1 protein with shRNA or inhibition of its activity with small molecule inhibitors impaired the accumulation of HIF-1α protein and the transcriptional increase of its target genes. In addition, endogenous SIRT1 and HIF-1α proteins co-immunoprecipitated and loss of SIRT1 activity led to a hyperacetylation of HIF-1α. Taken together, our data suggest that HIF-1α and SIRT1 proteins interact in HCC cells and that HIF-1α is a target of SIRT1 deacetylase activity. Moreover, SIRT1 is necessary for HIF-1α protein accumulation and activation of HIF-1 target genes under hypoxic conditions.
Resumo:
Scutellaria baicalensis (SB) and SB-derived polyphenols possess anti-proliferative activities in several cancers, including pancreatic cancer (PaCa). However, the precise molecular mechanisms have not been fully defined. SB extract and SB-derived polyphenols (wogonin, baicalin, and baicalein) were used to determine their anti-proliferative mechanisms. Baicalein significantly inhibited the proliferation of PaCa cell lines in a dose-dependent manner, whereas wogonin and baicalin exhibited a much less robust effect. Treatment with baicalein induced apoptosis with release of cytochrome c from mitochondria, and activation of caspase-3 and -7 and PARP. The general caspase inhibitor zVAD-fmk reversed baicalein-induced apoptosis, indicating a caspase-dependent mechanism. Baicalein decreased expression of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, presumably through a transcriptional mechanism. Genetic knockdown of Mcl-1 resulted in marked induction of apoptosis. The effect of baicalein on apoptosis was significantly attenuated by Mcl-1 over-expression, suggesting a critical role of Mcl-1 in this process. Our results provide evidence that baicalein induces apoptosis in pancreatic cancer cells through down-regulation of the anti-apoptotic Mcl-1 protein.
Resumo:
Fas (CD95/Apo-1) ligand-mediated apoptosis induction of target cells is one of the major effector mechanisms by which cytotoxic lymphocytes (T cells and natural killer cells) kill their target cells. In T cells, Fas ligand expression is tightly regulated at a transcriptional level through the activation of a distinct set of transcription factors. Increasing evidence, however, supports an important role for posttranscriptional regulation of Fas ligand expression and activity. Lipid rafts are cholesterol- and sphingolipid-rich membrane microdomains, critically involved in the regulation of membrane receptor signaling complexes through the clustering and concentration of signaling molecules. Here, we now provide evidence that Fas ligand is constitutively localized in lipid rafts of FasL transfectants and primary T cells. Importantly, disruption of lipid rafts strongly reduces the apoptosis-inducing activity of Fas ligand. Localization to lipid rafts appears to be predominantly mediated by the characteristic cytoplasmic proline-rich domain of Fas ligand because mutations of this domain result in reduced recruitment to lipid rafts and attenuated Fas ligand killing activity. We conclude that Fas ligand clustering in lipid rafts represents an important control mechanism in the regulation of T cell-mediated cytotoxicity.
Resumo:
Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. Conclusion: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.
Resumo:
Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.
Resumo:
The transcription factor PU.1 is essential for terminal myeloid differentiation, B- and T-cell development, erythropoiesis and hematopoietic stem cell maintenance. PU.1 functions as oncogene in Friend virus-induced erythroleukemia and as tumor suppressor in acute myeloid leukemias. Moreover, Friend virus-induced erythroleukemia requires maintenance of PU.1 expression and the disruption of p53 function greatly accelerates disease progression. It has been hypothesized that p53-mediated expression of the p21(Cip1) cell cycle inhibitor during differentiation of pre-erythroleukemia cells promotes selection against p53 function. In addition to the blockage of erythroblast differentiation provided by increased levels of PU.1, we propose that PU.1 alters p53 function. We demonstrate that PU.1 reduces the transcriptional activity of the p53 tumor suppressor family and thus inhibits activation of genes important for cell cycle regulation and apoptosis. Inhibition is mediated through binding of PU.1 to the DNA-binding and/or oligomerization domains of p53/p73 proteins. Lastly, knocking down endogenous PU.1 in p53 wild-type REH B-cell precursor leukemia cells leads to increased expression of the p53 target p21(Cip1).
Resumo:
The mitotic kinase Aurora B plays a pivotal role in mitosis and cytokinesis and governs the spindle assembly checkpoint which ensures correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in breast and other cancers and may be an important molecular target for chemotherapy. Tumor suppressor p53 is the guardian of the genome and an important negative regulator of the cell cycle. Previously, it was unknown whether Aurora B and p53 had mutual regulation during the cell cycle. A small molecule specific inhibitor of Aurora B, AZD1152, gave us an indication that Aurora B negatively impacted p53 during interphase and mitosis. Here, we show the antineoplastic activity of AZD1152 in six human breast cancer cell lines, three of which overexpress HER2. AZD1152 specifically inhibited Aurora B kinase activity, thereby causing mitotic catastrophe, polyploidy and apoptosis, which in turn led to apoptotic death. Further, AZD1152 administration efficiently suppressed tumor growth in orthotopic and metastatic breast cancer cell xenograft models. Notably, it was found that the protein level of Aurora B kinase declined after inhibition of Aurora B kinase activity. Investigation of the underlying mechanism suggested that AZD1152 accelerated the protein turnover of Aurora B by enhancing its ubiquitination. As a consequence of inhibition of Aurora B, p53 levels were increased in tissue culture and murine models. This hinted at a possible direct interaction between p53 and Aurora B. Indeed, it was found that p53 and Aurora B exist in complex and interact directly during interphase and at the centromere in mitosis. Further, Aurora B was shown to phosphorylate p53 at several serine/threonine residues in the DNA binding domain and these events caused downregulation of p53 levels via ubiquitination mediated by Mdm2. Importantly, phosphorylation of threonine 211 was shown to reduce p53’s transcriptional activity while other phosphorylation sites did not. On a functional level, Aurora B was shown to reduce p53’s capacity to mediate apoptosis in response to the DNA damaging agent, cisplatin. These results define a novel mechanism for p53 inactivation by Aurora B and imply that oncogenic hyperactivation or overexpression of Aurora B may compromise p53’s tumor suppressor function.
Resumo:
Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product.
Resumo:
The FsrABC system of Enterococcus faecalis controls the expression of gelatinase and a serine protease via a quorum-sensing mechanism, and recent studies suggest that the Fsr system may also regulate other genes important for virulence. To investigate the possibility that Fsr influences the expression of additional genes, we used transcriptional profiling, with microarrays based on the E. faecalis strain V583 sequence, to compare the E. faecalis strain OG1RF with its isogenic mutant, TX5266, an fsrB deletion mutant. We found that the presence of an intact fsrB influences expression of numerous genes throughout the growth phases tested, namely, late log to early stationary phase. In addition, the Fsr regulon is independent of the activity of the proteases, GelE and SprE, whose expression was confirmed to be activated at all three time points tested. While expression of some genes (i.e., ef1097 and ef0750 to -757, encoding hypothetical proteins) was activated in late log phase in OG1RF versus the fsrB deletion mutant, expression of ef1617 to -1634 (eut-pdu orthologues) was highly repressed by the presence of an intact Fsr at entry into stationary phase. This is the first time that Fsr has been characterized as a negative regulator. The newly recognized Fsr-regulated targets include other factors, besides gelatinase, described as important for biofilms (BopD), and genes predicted to encode the surface proteins EF0750 to -0757 and EF1097, along with proteins implicated in several metabolic pathways, indicating that the FsrABC system may be an important regulator in strain OG1RF, with both positive and negative effects.