958 resultados para THERAPY-INDUCED APOPTOSIS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the relationship between NF-kappa B activation and hepatic stellate cell (HSC) apoptosis in hepatosplenic schistosomiasis, hepatic biopsies from patients with Schistosoma mansoni-induced periportal fibrosis, hepatitis C virus-induced cirrhosis, and normal liver were submitted to alpha-smooth muscle actin (alpha-SMA) and NF-kappa B p65 immunohistochemistry, as well as to NF-kappa B Southwestern histochemistry and TUNEL assay. The numbers of alpha-SMA-positive cells and NF-kappa B- and NF-kappa B p65-positive HSC nuclei were reduced in schistosomal fibrosis relative to liver cirrhosis. In addition, increased HSC NF-kappa B p65 and TUNEL labeling was observed in schistosomiasis when compared to cirrhosis. These results suggest a possible relationship between the slight activation of the NF-kappa B complex and the increase of apoptotic HSC number in schistosome-induced fibrosis, taking place to a reduced HSC number in schistosomiasis in relation to liver cirrhosis. Therefore, the NF-kappa B pathway may constitute an important down-regulatory mechanism in the pathogenesis of human schistosomiasis mansoni, although further studies are needed to refine the understanding of this process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined whether two functional polymorphisms (g.-1562C>T and g.-90(CA)14-24) in the matrix metalloproteinase (MMP)-9 gene or MMP-9 haplotypes affect the circulating levels of pro-MMP-9 and pro-MMP-9/TIMP-1 (tissue inhibitor of metalloproteinase-1) ratios in AIDS patients, and modulate alterations in these biomarkers after highly active antiretroviral therapy (HAART). We studied 82 patients commencing HAART. Higher pro-MMP-9 concentrations and pro-MMP-9/TIMP-1 ratios were found in CT/TT patients compared with CC patients. HAART decreased pro-MMP-9 levels and pro-MMP-9/TIMP-1 ratios in CT/TT patients, it did not modify pro-MMP-9 levels and it increased pro-MMP-9/TIMP-1 ratios in CC patients. The g.-90(CA)14-24 polymorphism, however, produced no significant effects. Moreover, we found no significant differences in HAART-induced changes in plasma pro-MMP-9, TIMP-1 and pro-MMP-9/TIMP-1 ratios when different MMP-9 haplotypes were compared. These findings suggest that the g.-1562C>T polymorphism affects pro-MMP-9 levels in patients with AIDS and modulates the alterations in pro-MMP-9 levels caused by HAART, thus possibly affecting the risk of cardiovascular complications. The Pharmacogenomics Journal (2009) 9, 265-273; doi: 10.1038/tpj.2009.13; published online 21 April 2009

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Type I diabetes is thought to occur as a result of the loss of insulin-producing pancreatic beta cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the beta cells, is used to trigger the initial cell death. High single doses of STZ cause extensive beta -cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), beta -cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in A-PNG(-/-) islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the beta cells of APNG(-/-) mice. Apoptosis was not observed in PARP-inhibited APNG(+/+) mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG(-/-) mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of beta -cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG(-/-) and APNG(-/-) mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG(-/-) mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O Acidente Vascular Encefálico é uma das principais causas de morte, tornando-se cada vez mais iminente processos de reabilitação que minimizem as sequelas, nomeadamente as limitações do membro superior que dificultam o envolvimento em atividades da vida diária. O Constraint-Induced Movement Therapy, surge como uma abordagem que incrementa o uso do membro superior mais afetado. A presente investigação trata-se de um estudo de casos múltiplos. Pretende-se verificar se existem melhorias na funcionalidade do membro superior mais afetado, analisar em que atividades da vida diária são visíveis melhorias funcionais e compreender se o maior envolvimento nas atividades diárias está diretamente relacionado com a melhoria na capacidade funcional. Pretende-se ainda que os valores obtidos no Wolf Motor Function Test sejam um contributo para a sua validação para a população portuguesa. Utilizou-se um questionário para recolha de dados pessoais e clínicos (amplitudes de movimento, dor e espasticidade); o Wolf Motor Function Test e o Action Research Arm Test para verificar a funcionalidade do membro superior mais afetado; e a Motor Activity Log que avalia o envolvimento em atividades da vida diária. O grupo é constituído por 3 utentes que sofreram um primeiro Acidente Vascular Encefálico até 9 meses de evolução, internados na Santa Casa da Misericórdia de Monção e que cumpriam os critérios de inclusão. O programa foi implementado três horas/dia, durante 10 dias, mantendo a restrição no membro superior menos afetado durante 90% do dia acordado. Como se trata de um estudo de casos múltiplos, analisou-se cada participante individualmente e verificou-se a diferença entre os resultados finais e iniciais para cada uma das variáveis. Os resultados obtidos revelam ganhos na amplitude de movimento, velocidade de execução e capacidade funcional do membro superior mais afetado, nomeadamente nas funções de preensão e pinça da mão, bem como se testemunhou minimização do fenómeno learned nonuse. Verificaram-se ganhos funcionais em todos os participantes nas atividades da vida diária apesar de serem diferentes de participante para participante. Dois participantes afirmaram que voltariam a participar no programa.Conclui-se, assim que a técnica resulta em ganhos funcionais nestes utentes, indicando um caminho alternativo a outras abordagens de reabilitação.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation is presented to obtain a Master degree in Structural and Functional Biochemistry

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation to obtain Master Degree in Biotechnology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autophagy or "self eating" is frequently activated in tumor cells treated with chemotherapy or irradiation. Whether autophagy represents a survival mechanism or rather contributes to cell death remains controversial. To address this issue, the role of autophagy in radiosensitive and radioresistant human cancer cell lines in response to gamma-irradiation was examined. We found irradiation-induced accumulation of autophagosomes accompanied by strong mRNA induction of the autophagy-related genes beclin 1, atg3, atg4b, atg4c, atg5, and atg12 in each cell line. Transduction of specific target-siRNAs led to down-regulation of these genes for up to 8 days as shown by reverse transcription-PCR and Western blot analysis. Blockade of each autophagy-related gene was associated with strongly diminished accumulation of autophagosomes after irradiation. As shown by clonogenic survival, the majority of inhibited autophagy-related genes, each alone or combined, resulted in sensitization of resistant carcinoma cells to radiation, whereas untreated resistant cells but not sensitive cells survived better when autophagy was inhibited. Similarly, radiosensitization or the opposite was observed in different sensitive carcinoma cells and upon inhibition of different autophagy genes. Mutant p53 had no effect on accumulation of autophagosomes but slightly increased clonogenic survival, as expected, because mutated p53 protects cells by conferring resistance to apoptosis. In our system, short-time inhibition of autophagy along with radiotherapy lead to enhanced cytotoxicity of radiotherapy in resistant cancer cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) plays a central role in cell life by controlling processes such as growth or proliferation. This receptor is commonly overexpressed in a number of epithelial malignancies and its upregulation is often associated with an aggressive phenotype of the tumor. Thus, targeting of EGFR represents a very promising challenge in oncology, and antibodies raised against this receptor have been investigated as potential antitumor agents. Various putative mechanisms of action were proposed for such antibodies, including decreased proliferation, induction of apoptosis, stimulation of the immunological response against targeted cancer cells or combinations thereof. We report here the development of an alternative high affinity molecule that is directed against EGFR. Production of this pentameric protein, named peptabody-EGF, includes expression in a bacterial expression system and subsequent refolding and multimerization of peptabody monomers. The protein complex contains 5 human EGF ligand domains, which confer specific binding towards the extracellular portion of EGFR. Receptor binding of the peptabody-EGF had a strong antiproliferative effect on different cancer cell lines overexpressing EGFR. However, cells expressing constitutive levels of the target receptor were barely affected. Peptabody-EGF treated cancer cells exhibited typical characteristics of apoptosis, which was found to be induced within 30 min after the addition of the peptabody-EGF. In vitro experiments demonstrated a significantly higher binding activity for peptabody-EGF than for the therapeutic monoclonal EGFR antibody Mab-425. Furthermore, the antitumor action provoked by the peptabody-EGF was greatly superior than antibody mediated effects when tested on EGFR overexpressing cancer cell lines. These findings suggest a potential application of this high affinity molecule as a novel tool for anti-EGFR therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: We investigate a new heat delivery technique for the local treatment of solid tumors. The technique involves injecting a formulation that solidifies to form an implant in situ. This implant entraps superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microbeads for magnetically induced moderate hyperthermia. Particle entrapment prevents phagocytosis and distant migration of SPIONs. The implant can be repeatedly heated by magnetic induction. Methods: We evaluated heating and treatment efficacies by means of thermometry and survival studies in nude mice carrying subcutaneous human colocarcinomas. At day 1, we injected the formulation into the tumor. At day 2, a single 20-min hyperthermia treatment was delivered by 141-kHz magnetic induction using field strengths of 9 to 12 mT under thermometry. Results: SPIONs embedded in silica microbeads were effectively confined within the implant at the injection site. Heat-induced necro-apoptosis was assessed by histology on day 3. On average, 12 mT resulted in tumor temperature of 47.8 degrees C, and over 70% tumor necrosis that correlated to the heat dose (AUC = 282 degrees C.min). In contrast, a 9-mT field strength induced tumoral temperature of 40 degrees C (AUC = 131 degrees C.min) without morphologically identifiable necrosis. Survival after treatment with 10.5 or 12 mT fields was significantly improved compared to non-implanted and implanted controls. Median survival times were 27 and 37 days versus 12 and 21 days respectively. Conclusion: Five of eleven mice (45%) of the 12 mT group survived one year without any tumor recurrence, holding promise for tumor therapy using magnetically induced moderate hyperthermia through injectable implants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activation of the transcription factor NF-kappaB often results in protection against apoptosis. In particular, pro-apoptotic tumor necrosis factor (TNF) signals are blocked by proteins that are induced by NF-kappaB such as TNFR-associated factor 1 (TRAF1). Here we show that TRAF1 is cleaved after Asp-163 when cells are induced to undergo apoptosis by Fas ligand (FasL). The C-terminal cleavage product blocks the induction of NF-kappaB by TNF and therefore functions as a dominant negative (DN) form of TRAF1. Our results suggest that the generation of DN-TRAF1 is part of a pro-apoptotic amplification system to assure rapid cell death.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary : Clinical evidence indicates that tumors recurring within previously irradiated fields are highly invasive and metastatic, suggesting a role of the tumor stroma in this effect. Angiogenesis plays a critical role in tumor progression. Ionizing radiation is known to induce apoptosis of angiogenic endothelial cells, while the effect on quiescent endothelial cells and de novo angiogenesis is not well characterized. We recently observed that irradiation of normal tissue prevents tumor- and growth factor-induced angiogenesis. The main aim of my thesis work was to characterize the mechanisms of radiation-mediated inhibition of angiogenesis. To this purpose we used a combination of in vivo and ex vivo studies on irradiated healthy tissue, and in vitro irradiation experiments using angiogenesis models and isolated endothelial cells. We found that irradiation did not induce endothelial cell apoptosis and did not disrupt quiescent vessels within irradiated skin. Radiation reduced the recruitment of leukocytes to angiogenic Matrigel plugs, but this effect was rather secondary to decreased angiogenesis, as exogenous addition of leucocytes to Matrigel plugs did not rescue the angiogenesis defects. To ascertain the direct effect of radiation on endothelial cells, we used the mouse aortic ring assay to test the sprouting capacity of irradiated endothelial cells ex vivo and in vitro, and found that irradiation completely suppressed endothelial cell sprouting. Using HUVEC cells, we showed that irradiation of quiescent confluent endothelial cells did not induce cell death but suppressed subsequent migration and cell proliferation and induced senescence. By Western blotting, we observed a rapid and sustained increase in p21 levels, previously shown to be activated by p53 in response to double strand break, and mediating senescence in human cells. Current experiments focus on the mechanism of sustained p21 upregulation and its role in reduced migration. Inhibition of endothelial cell migration and proliferation by radiation may explain reduced angiogenesis in tumors growing in previously irradiated fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The pre-treatment of tumor neo-vessels by photodynamic therapy (PDT) was shown to improve the distribution of chemotherapy administered subsequently. However, the precise mechanism by which PDT modifies the tumor vasculature is unknown. We have recently shown that leukocyteendothelial cell interaction was essential for PDT induced drug delivery to normal tissue. Our purpose was to determine if PDT could enhance drug distribution in malignant mesothelioma and if a comparable role for leucocytes existed.Methods: We grew human mesothelioma xenografts (H-meso-1) in the dorsal skinfold chambers of nude mice (n = 28). The rolling, sticking and recruitment of leucocytes was assessed in tumor and normal vessels following PDT (Visudyne 0?4 mg/kg, fluence rate 200 mW/cm2, fluence 60 J/cm2) using intravital microscopy. In parallel, the distribution of a macromolecule (FITC dextran, 2000 kDa) administered after PDT was determined. We compared these variables in control (no PDT), PDT + IgG (non specific antibody) and PDT + pan-selectin antibody (monoclonal P-E-L selectin antibody).Results: PDT significantly enhanced the distribution of FITC dextran in mesothelioma xenografts compared to controls. Interestingly, PDT enhanced the leukocyte-endothelial interaction significantly (rolling and recruitment)in tumor and surrounding normal vessels compared to controls. Leukocyte recruitment was significantly down-regulated by pan-selectin antibodies in tumor tissues. However, the suppression of leucocyte recruitement did not affect the extravasation of FITC-dextran in tumor tissue.Conclusion:PDTpre-treatment of the mesothelioma vasculature can enhance the distribution of macromolecular drugs administered subsequently. However, unlike normal vessels, leukocyte-endothelial cell interaction is not required for PDT induced leakage.