980 resultados para TEMPERATURE RANGE 0400-1000 K


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quaternary oxide in the system Al2O3-CaO-TiO2 is found to have the composition Ca3Ti8Al12O37 rather than CaTi3Al8O19 as reported in the literature. The standard Gibbs energy of formation of Ca3Ti8Al12O37 from component binary oxides is measured in the temperature range from 900 to 1250 K using a solid-state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The results can be represented by the equation: delta G(f(0x))(0) (+/- 70)/J mol(-1) = -248474 - 15.706(T/K). Combining this information with thermodynamic data on calcium aluminates and titanates available in the literature, subsolidus phase relations in the pseudo-ternary system Al2O3-CaO-TiO2 are computed and presented as isothermal sections. The evolution of phase relations with temperature is highlighted. Chemical potential diagrams are computed at 1200 K, showing the stability domains of the various phases in the chemical potential-composition space. In each chemical potential diagram, chemical potential of one component is plotted against the cationic fraction of the other two components. The diagrams are valid at relatively high oxygen potentials where Ti is present in its four-valent state in all the oxide phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sr1-xMnxTiO3 (where x=0.03, 0.05, 0.07 and 0.09) was synthesized via different routes that include solid-state, oxalate precipitation and freeze drying. In oxalate precipitation technique, compositions corresponding to 3 and 5 mol% doping of Mn were monophasic whereas the higher compositions revealed the presence of the secondary phases such as MnO, Mn3O4 etc., as confirmed by high resolution X-ray diffraction (XRD) studies. The decomposition behavior of the precursors prepared using oxalate precipitation method corresponding to the above mentioned compositions was studied. Nanopowders of compositions pertaining to 5 to 9 mol% of Mn doping were obtained using freeze-drying technique. The average crystallite size of these nanopowders was found to be in the 35 to 65 nm range. The microstructural studies carried out on the sintered ceramics, fabricated using powders synthesized by different routes established the fine grained nature ( < 1 mu m) of the one obtained by freeze drying method. Raman scattering studies were carried out in order to complement the observations made from XRD regarding the phase purity. The dielectric properties of the ceramics obtained by different synthesis routes were studied in the 80-300 K temperature range at 100 kHz and the effect of grain size has been discussed. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 degrees C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be similar to 0.5 eV and similar to 1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 degrees C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen nonstoichiometry of three ternary oxides. YFeO3-delta, YFe2O4-alpha and Y3Fe5O12-theta. in the system Y-Fe-O was investigated as a function of oxygen partial pressure by thermogravimetry at high temperature. The defects responsible for nonstoichiometry were identified as oxygen vacancies for YFeO3-delta and YFe2O4-alpha although the manner of variation of nonstoichiometric parameter with oxygen partial pressure for these two oxides is quite different. Cation interstitials are the predominant defects in Y3Fe5O12-theta. Gibbs energies of formation of the three nonstoichiometric oxides were determined using solid-state electrochemical cells in the temperature range from 975 to 1475 K. YFe2O4-alpha was found to be stable only above 1391 K. Gibbs energies of formation of the three stoichiometric compounds from their component binary oxides were obtained by combining information from solid state cells with results of thermogravimetric analysis using the Gibbs-Duhem relation. The results can be summarized as: (1/2)Y2O3 + (1/2)Fe2O3 -> YFeO3;Delta G(f(ox))(O)(+/- 250)(J/mol) = 17, 126-8.263T (1/2)Y2O3 + FeO + (1/2)Fe2O3 -> YFe2O4;Delta G(f(ox))(O)(+/- 260)(J/mol) = -10,352-13.24T (3/2)Y2O3 + (5/2)Fe2O3 -> Y3Fe5O12;Delta G(f(ox))(O)(+/- 780)(J/mol) = -56, 647-31.091T. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the structural evolution of La0.2Sr0.8MnO3 using temperature dependent high resolution synchrotron x-ray diffraction technique. In a wide temperature range, La0.2Sr0.8MnO3 reveals nanoscale structural inhomogeneity consisting of cubic and tetragonal phases. The present results suggest that domains of nanometer size of the tetragonal (low temperature) phase start nucleating in the cubic (high temperature) phase even above the Neel temperature (T-N). The tetragonal phase fraction increases substantially below T-N. Detailed analysis suggests that the twinned phase is tetragonal, orbital ordered, and insulating. At temperatures below 170 K, a small amount of the cubic phase is retained. The present results reveal the significance of the connectivity between the nanoscale structural phase separation with the physical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interdiffusion study is conducted in the Au-Cu system, which has complete solid solution in the higher temperature range and ordered phases in the lower temperature range. First experiments are conducted at higher temperatures, where atoms can diffuse randomly. Higher values of interdiffusion coefficients are found in the range of 40-50 at.% Cu. This trend is explained with the help of thermodynamic factor and possible concentration of vacancies. Following an experiment is conducted at 623 K (350 degrees C), where the ordered phases are grown. The interdiffusion coefficients at this temperature are compared after extrapolating the data calculated at higher temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamic properties of the HoRhO3 were determined in the temperature range from 900 to 1300 K by using a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of orthorhombic perovskite HoRhO3, from Ho2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure, can be expressed by the equation; Delta G(f)degrees((ox)) (+/- 78)/(J/mol) = -50535 + 3.85(T/K) Using the thermodynamic data of HoRhO3 and auxiliary data for binary oxides from the literature, the phase relations in the Ho-Rh-O system were computed at 1273 K. Thermodynamic data for intermetallic phases in the binary Ho-Rh were estimated from experimental enthalpy of formation for three compositions from the literature and Miedema's model, consistent with the phase diagram. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1273 K, and temperature-composition diagrams at constant oxygen partial pressures were computed for the system Ho-Rh-O. The decomposition temperature of HoRhO3 is 1717(+/- 2) K in pure O-2 and 1610(+/- 2) K in air at a total pressure p(o) = 0.1 MPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the temperature evolution of coherently excited acoustic and optical phonon dynamics in the superconducting iron pnictide single crystal Ca(Fe0.944Co0.056)(2)As-2 across the spin density wave transition at T-SDW similar to 85 K and the superconducting transition at T-SC similar to 20 K. The strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range from 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T-SC indicating a coupling of these low-energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T similar to 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T-SDW. Copyright (c) EPLA, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase equilibria in the system Tm-Rh-O at 1200 K is established by isothermal equilibration of selected compositions and phase identification after quenching to room temperature. Six intermetallic phases (Tm3Rh, Tm7Rh3, Tm5Rh3, Tm3Rh2, TmRh, TmRh2 +/-delta) and a ternary oxide TmRhO3 are identified. Based on experimentally determined phase relations, a solid-state electrochemical cell is devised to measure the standard free energy of formation of orthorhombic perovskite TmRhO3 from cubic Tm2O3 and beta-Rh2O3 in the temperature range from (900 to 1300) K. The results can be summarized as: Delta G(f,ox)(o) +/- 104/J.mol(-1) = -46474 + 3.925(T/K). Invoking the Neumann-Kopp rule, the standard enthalpy of formation of TmRhO3 from its constituent elements at 298.15 K is estimated as -1193.89 (+/- 2.86) kJ.mol(-1). The standard entropy of TmRhO3 at 298.15 K is evaluated as 103.8 (+/- 1.6) J.mol(-1).K-1. The oxygen potential-composition diagram and three-dimensional chemical potential diagram at 1200 K and temperature-composition diagrams at constant partial pressures of oxygen are computed from thermodynamic data. The compound TmRhO3 decomposes at 1688 (+/- 2) K in pure oxygen and at 1583 (+/- 2) K in air at standard pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of chemical and thermal annealing techniques has been employed to synthesize a rarely reported nanocup structure of Mn doped ZnO with good yield. Nanocup structures are obtained by thermally annealing the powder samples consisting of nanosheets, synthesized chemically at room temperature, isochronally in a furnace at 200-500 degrees C temperature range for 2 h. Strong excitonic absorption in the UV and photoluminescence (PL) emission in UV-visible regions are observed in all the samples at room temperature. The sample obtained at 300 degrees C annealing temperature exhibits strong PL emission in the UV due to near-band-edge emission along with very week defect related emissions in the visible regions. The synthesized samples have been found to be exhibiting stable optical properties for 10 months which proved the unique feature of the presented technique of synthesis of nanocup structures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, variable temperature FT-IR spectroscopic investigations were used to characterize the spectral changes in oleic acid during heating oleic acid in the temperature range from -30 degrees;C to 22 degrees C. In order to extract more information about the spectral variations taking place during the phase transition process, 2D correlation spectroscopy (2DCOS) was employed for the stretching (C?O) and rocking (CH2) band of oleic acid. However, the interpretation of these spectral variations in the FT-IR spectra is not straightforward, because the absorption bands are heavily overlapped and change due to two processes: recrystallization of the ?-phase and melting of the oleic acid. Furthermore, the solid phase transition from the ?- to the a-phase was also observed between -4 degrees C and -2 degrees C. Thus, for a more detailed 2DCOS analysis, we have split up the spectral data set in the subsets recorded between -30 degrees C to -16 degrees C, -16 degrees C to 10 degrees C, and 10 degrees C to 22 degrees C. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands that are characteristic of the crystalline and amorphous regions of oleic acid were separated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and beta-Rh2O3 with orthorhombic structure, can be represented by the equation: Delta G(f(OX))(O) (+/- 182)/J mol(-1) = -52710+3.821(T/K). By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema's model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential-composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature-composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (+/- 2.5) K in pure oxygen and 1,624 (+/- 2.5) K and in air at standard pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Void filling in (I) Bi-x-added Co4Sb12 or (II) Sb/Bi substitution of Co4Sb12-xBix has been investigated for structural and thermoelectric properties evaluation. X-ray powder data Rietveld refinements combined with electron probe microanalyses showed a polycrystalline and practically Bi-free CoSb3 skutterudite phase as the major constituent as well as a secondary Bi phase in the grain boundaries. For series I alloys, the electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature in the range from 450 to 750 K. The electrical conductivity of all the samples increased with increasing temperature, showing a semiconducting nature with smaller values of the Seebeck coefficient for higher Bi fractions. Conduction over the entire temperature range was found to arise from a single p-type carrier. Thermal conductivity showed a reduction with Bi added in all the samples, except for Bi0.75Co4Sb12, and the lowest lattice thermal conductivity was found for a Bi-added fraction of 0.5. The maximum zT value of 0.53 at 632 K is higher than that of Co4Sb12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For most fluids, there exist a maximum and a minimum in the curvature of the reduced vapor pressure curve, p(r) = p(r)(T-r) (with p(r) = p/p(c) and T-r = T/T-c, p(c) and T-c being the pressure and temperature at the critical point). By analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids, we find that the maximum occurs in the reduced temperature range 0.5 <= T-r <= 0.8 while the minimum occurs in the reduced temperature range 0.980 <= T-r <= 0.995. Vapor pressure equations for which d(2)p(r)/dT(r)(2) diverges at the critical point present a minimum in their curvature. Therefore, the point of minimum curvature can be used as a marker for the critical region. By using the well-known Ambrose-Walton (AW) vapor pressure equation we obtain the reduced temperatures of the maximum and minimum curvature in terms of the Pitzer acentric factor. The AW predictions are checked against those obtained from NIST data. (C) 2013 Elsevier Ltd. All rights reserved.