997 resultados para Surface relief gratings
Resumo:
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.
Estimation of surface roughness in a semiarid region from C-band ERS-1 synthetic aperture radar data
Resumo:
In this study, we investigated the feasibility of using the C-band European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data to estimate surface soil roughness in a semiarid rangeland. Radar backscattering coefficients were extracted from a dry and a wet season SAR image and were compared with 47 in situ soil roughness measurements obtained in the rocky soils of the Walnut Gulch Experimental Watershed, southeastern Arizona, USA. Both the dry and the wet season SAR data showed exponential relationships with root mean square (RMS) height measurements. The dry C-band ERS-1 SAR data were strongly correlated (R² = 0.80), while the wet season SAR data have somewhat higher secondary variation (R² = 0.59). This lower correlation was probably provoked by the stronger influence of soil moisture, which may not be negligible in the wet season SAR data. We concluded that the single configuration C-band SAR data is useful to estimate surface roughness of rocky soils in a semiarid rangeland.
Resumo:
The European Space Agency Soil Moisture andOcean Salinity (SMOS) mission aims at obtaining global maps ofsoil moisture and sea surface salinity from space for large-scale andclimatic studies. It uses an L-band (1400–1427 MHz) MicrowaveInterferometric Radiometer by Aperture Synthesis to measurebrightness temperature of the earth’s surface at horizontal andvertical polarizations ( h and v). These two parameters will beused together to retrieve the geophysical parameters. The retrievalof salinity is a complex process that requires the knowledge ofother environmental information and an accurate processing ofthe radiometer measurements. Here, we present recent resultsobtained from several studies and field experiments that were partof the SMOS mission, and highlight the issues still to be solved.
Resumo:
The impact of topography and mixed pixels on L-band radiometric observations over land needs to be quantified to improve the accuracy of soil moisture retrievals. For this purpose, a series of simulations has been performed with an improved version of the soil moisture and ocean salinity (SMOS) end-to-end performance simulator (SEPS). The brightness temperature generator of SEPS has been modified to include a 100-m-resolution land cover map and a 30-m-resolution digital elevation map of Catalonia (northeast of Spain). This high-resolution generator allows the assessment of the errors in soil moisture retrieval algorithms due to limited spatial resolution and provides a basis for the development of pixel disaggregation techniques. Variation of the local incidence angle, shadowing, and atmospheric effects (up- and downwelling radiation) due to surface topography has been analyzed. Results are compared to brightness temperatures that are computed under the assumption of an ellipsoidal Earth.
Resumo:
We perform direct numerical simulations of drainage by solving Navier- Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and to model the transition from stable flow to viscous fingering, we focus on the definition of macroscopic capillary pressure. When the fluids are at rest, the difference between inlet and outlet pressures and the difference between the intrinsic phase average pressure coincide with the capillary pressure. However, when the fluids are in motion these quantities are dominated by viscous forces. In this case, only a definition based on the variation of the interfacial energy provides an accurate measure of the macroscopic capillary pressure and allows separating the viscous from the capillary pressure components.
Resumo:
The monogenetic kinetoplastid protozoan parasite Herpetomonas samuelpessoai expresses a surface-exposed metalloprotease. Comparable to the Leishmania promastigote surface protease, or PSP, the protease of Herpetomonas is active at the surface of fixed and live organisms, and both enzymes display an identical cleavage specificity toward a nonapeptide substrate. The protease was enriched 440 times by partition into Triton X-114 followed by 2 steps of anion exchange chromatography. The 56-kDa enzyme is inhibited by the metal chelator 1,10-phenanthroline and is susceptible to cleavage by glycosyl-phosphatidylinositol phospholipase C (GPI-PLC). The conservation of an identical surface protease activity in these monogenetic and digenetic trypanosomatids suggests that the enzyme has a physiological function in the promastigote (insect) stage of these parasites.
Resumo:
This study compares the chemical composition of the solution and exchange complex of soil in a 3-year-old irrigated vineyard (Vitis vinifera L., Red Globe cultivar) with that of adjacent clearing in the native hyperxerophyllic 'caatinga' vegetation. The soils are classified as Plinthic Eutrophic Red-Yellow Argisol; according to Soil Taxonomy they are isohyperthermic Plinthustalfs. Detailed physiographic characterization revealed an impermeable gravel and cobble covering the crystalline rocks; the relief of this layer was more undulating than the level surface. Significant higher concentrations of extractable Na, K, Mg and Ca were observed within the vineyard. Lower soil acidity, higher Ca/Mg ratios, as well as lower sodium adsorption and Na/K ratios reflected additions of dolomitic lime, superphosphate and K-bearing fertilizers. As the water of the São Francisco River is of good quality for irrigation (C1S1), the increases in Na were primarily attributed to capillary rise from the saline groundwater table. None of the soil in the study area was found to be sodic. About 62% of the vineyard had an Ap horizon with salinity levels above 1.5dSm-1 (considered detrimental for grape production); according to average values for this horizon, a potential 13% reduction in grape production was predicted. Differences in chemical composition in function of distance to the collector canals were observed in the clearing, but not in the vineyard. The influence of differences in the elevations of the surface and impermeable layers, as well as pediment thickness, was generally weaker under irrigation. Under irrigation, soil moisture was greater in points of convergent surface waterflow; the effect of surface curvature on chemical properties, though less consistent, was also stronger in the vineyard.
Resumo:
A variant 35 kb upstream of the HLA-C gene (-35C/T) was previously shown to associate with HLA-C mRNA expression level and steady-state plasma HIV RNA levels. We genotyped this variant in 1,698 patients of European ancestry with HIV. Individuals with known seroconversion dates were used for disease progression analysis and those with longitudinal viral load data were used for viral load analysis. We further tested cell surface expression of HLA-C in normal donors using an HLA-C-specific antibody. We show that the -35C allele is a proxy for high HLA-C cell surface expression, and that individuals with high-expressing HLA-C alleles progress more slowly to AIDS and control viremia significantly better than individuals with low HLA-C expressing alleles. These data strongly implicate high HLA-C expression levels in more effective control of HIV-1, potentially through better antigen presentation to cytotoxic T lymphocytes or recognition and killing of infected cells by natural killer cells.
Resumo:
Platelet adhesion, the initial step of platelet activation, is mediated by the interaction of von Willebrand factor (VWF) with its platelet receptor, the GPIb-IX complex. The binding of VWF to GPIb-IX is induced either by increased shear stress or by exogenous modulators, such as botrocetin. At a molecular level, this interaction takes place between the A1 domain of VWF and the GPIb alpha chain of the GPIb-IX complex. We report here the design and functional characteristics of a VWF template-assembled synthetic protein (TASP), a chimeric four-helix-bundle TASP scaffold mimicking the surface of the A1 domain. Twelve residues located on helices alpha 3 and alpha 4 in the native A1 domain were grafted onto a surface formed by two neighboring helices of the TASP. VWF TASP was found to inhibit specifically botrocetin-induced platelet aggregation and to bind both botrocetin and GPIb alpha. However, in contrast to the native A1 domain, VWF TASP did not bind simultaneously to both ligands. Modeling studies revealed that the relative orientation of the alpha helices in VWF TASP led to a clash of bound botrocetin and GPIb alpha. These results demonstrate that a chimeric four-helix-bundle TASP as a scaffold offers a suitable surface for presenting crucial residues of the VWF A1 domain; the potential of the TASP approach for de novo protein design and mimicry is thereby illustrated.
Resumo:
Donateur : Lepetit, E. (18..-18..? ; directeur d'école)
Resumo:
Site-specific regression coefficient values are essential for erosion prediction with empirical models. With the objective to investigate the surface-soilconsolidation factor, Cf, linked to the RUSLE's prior-land-use subfactor, PLU, an erosion experiment using simulated rainfall on a 0.075 m m-1 slope, sandy loam Paleudult soil, was conducted at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul (EEA/UFRGS), in Eldorado do Sul, State of Rio Grande do Sul, Brazil. Firstly, a row-cropped area was excluded from cultivation (March 1995), the existing crop residue removed from the field, and the soil kept clean-tilled the rest of the year (to get a degraded soil condition for the intended purpose of this research). The soil was then conventional-tilled for the last time (except for a standard plot which was kept continuously cleantilled for comparison purposes), in January 1996, and the following treatments were established and evaluated for soil reconsolidation and soil erosion until May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) fresh-tilled soil, continuously in clean-tilled fallow (unit plot); (b) reconsolidating soil without cultivation; and (c) reconsolidating soil with cultivation (a crop sequence of three corn- and two black oats cycles, continuously in no-till, removing the crop residues after each harvest for rainfall application and redistributing them on the site after that). Simulated rainfall was applied with a Swanson's type, rotating-boom rainfall simulator, at 63.5 mm h-1 intensity and 90 min duration, six times during the two-and-half years of experimental period (at the beginning of the study and after each crop harvest, with the soil in the unit plot being retilled before each rainfall test). The soil-surface-consolidation factor, Cf, was calculated by dividing soil loss values from the reconsolidating soil treatments by the average value from the fresh-tilled soil treatment (unit plot). Non-linear regression was used to fit the Cf = e b.t model through the calculated Cf-data, where t is time in days since last tillage. Values for b were -0.0020 for the reconsolidating soil without cultivation and -0.0031 for the one with cultivation, yielding Cf-values equal to 0.16 and 0.06, respectively, after two-and-half years of tillage discontinuation, compared to 1.0 for fresh-tilled soil. These estimated Cf-values correspond, respectively, to soil loss reductions of 84 and 94 %, in relation to soil loss from the fresh-tilled soil, showing that the soil surface reconsolidated intenser with cultivation than without it. Two distinct treatmentinherent soil surface conditions probably influenced the rapid decay-rate of Cf values in this study, but, as a matter of a fact, they were part of the real environmental field conditions. Cf-factor curves presented in this paper are therefore useful for predicting erosion with RUSLE, but their application is restricted to situations where both soil type and particular soil surface condition are similar to the ones investigate in this study.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.