865 resultados para Supranational mechanism
Resumo:
Leaves of Artemisia annua L. are a plentiful source of artemisinin, a drug with proven effectiveness against malaria. The aim of this study was to classify the photosynthetic mechanism of A. annua through studies of the carbon isotope composition (δ 13C) and the leaf anatomy. A. annua presented a δ 13C value of - 31.76 ± 0.07, which characterizes the plants as a typical species of the C3 photosynthethic mechanism, considering that the average δ 13C values for C3 and C4 species are -28 and -14, respectively. The leaf anatomy studies were consistent with the δ 13C results, where, in spite of the existence of parenchymatic cells forming a sheath surrounding the vascular tissue, the cells do not contain chloroplasts or starch. This characteristic is clearly different from that of the Kranz anatomy found in C4 species.
Resumo:
We report the singular filtration properties of an ultrafiltration membrane made with mesoporous silica that exhibits cylindrical pores aligned mostly normal to the support. This membrane supported on tubular commercial macroporous alumina supports was prepared by the interfacial growth mechanism between stable silica-surfactant hybrid micelles made of the association of silica oligomers with polyethyleneoxide-based (PEO) surfactants and sodium fluoride, a well-known silica condensation catalyst [Boissière et al., An ultrafiltration membrane made with mesoporous MSU-X silica, Chem. Mater. 15 (2003) 460-463]. It appears that the combined effect of the silica nature of the membrane, whose surface charge can be easily adjusted by changing the pH and the non-connected cylindrical shape of the pores provides a new behavior in the retention properties, as proved by the filtration of polyoxyethylene polymers (PEO) with different molecular weights. Depending on the filtration conditions, a rejection rate of 80% and a steep cut-off at 2000 Da can be obtained or, on the reverse, polymers three times bigger than the pore diameter can diffuse through the membrane. This new filtration mechanism, which opens up new modes of separation modes, is explained in the light of both topology of the porous network and pH-dependent interactions between PEO polymers and silica porous media. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Formation of antimony polyphosphate using Sb2O3 and/or (NH4)2HPO4 and NH4H 2PO4 as starting materials has been simulated by thermal analysis technique. The elimination of water and ammonia molecules induced by heating leads to the formation of intermediate ammonium polyphosphate, which subsequently reacts with Sb2O3. Morphologically, vitreous Sb(PO3)3 is composed of plaques having irregular shapes. Infrared spectra and NMR study is consistent with tetrametaphosphate anion arrangement. The compound is thermally unstable and may be recommended as a donor of -O-P-O- linkers in the preparation of special phosphate glasses. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
Objective: The objective of this study was to investigate the mediators and the resident peritoneal cells involved in the neutrophil migration (NM) induced by mineral trioxide aggregate (MTA) in mice. Study design: MTA (25 mg/cavity) was injected into normal and pretreated peritoneal cavities (PC) with indomethacin (IND), dexamethasone (DEX), BWA4C, U75302, antimacrophage inflammatory protein-2 (MIP-2), and anti-interleukin-1β (IL-1β) antibodies and the NM was determined. The role of macrophage (MO) and mast cells (MAST) was determined by administration of thioglycollate 3% or 48/80 compound, respectively. The concentration of IL-1β and MIP-2 exudates was measured by ELISA. Results: MTA induced dose- and time-dependent NM into mice PC, with the participation of MO and MAST. NM was inhibited by DEX, BWA4C, and U75302, as well as anti-MIP-2 and anti-IL-1β antibodies. In the exudates, IL-1β and MIP-2 were detected. Conclusions: This study suggests that MTA induces NM via a mechanism dependent on MAST and MO mediated by IL-1β, MIP-2, and LTB4. © 2008 Mosby, Inc. All rights reserved.
Resumo:
Purpose: We evaluated the somatic and autonomic innervation of the pelvic floor and rhabdosphincter before and after nerve sparing radical retropubic prostatectomy using neurophysiological tests and correlated findings with clinical parameters and urinary continence. Materials and Methods: From February 2003 to October 2005, 46 patients with prostate cancer were enrolled in a controlled, prospective study. Patients were evaluated before and 6 months after nerve sparing radical retropubic prostatectomy using the UCLA-PCI urinary function domain and neurophysiological tests, including somatosensory evoked potential, and the pudendo-urethral, pudendo-anal and urethro-anal reflexes. Clinical parameters and urinary continence were correlated with afferent and efferent innervation of the membranous urethra and pelvic floor. We used strict criteria to define urinary continence as complete dryness with no leakage at all, not requiring any pads or diapers and with a UCLA-PCI score of 500. Patients with a sporadic drop of leakage, requiring up to 1 pad daily, were defined as having occasional urinary leakage. Results: Two patients were excluded from study due to urethral stricture postoperatively. We evaluated 44 patients within 6 months after surgery. The pudendo-anal and pudendo-urethral reflexes were unchanged postoperatively (p = 0.93 and 0.09, respectively), demonstrating that afferent and efferent pudendal innervation to this pelvic region was not affected by the surgery. Autonomic afferent denervation of the membranous urethral mucosa was found in 34 patients (77.3%), as demonstrated by a postoperative increase in the urethro-anal reflex sensory threshold and urethro-anal reflex latency (p <0.001 and 0.0007, respectively). Six of the 44 patients used pads. One patient with more severe leakage required 3 pads daily and 23 showed urinary leakage, including 5 who needed 1 pad per day and 18 who did not wear pads. Afferent autonomic denervation at the membranous urethral mucosa was found in 91.7% of patients with urinary leakage. Of 10 patients with preserved urethro-anal reflex latency 80% were continent. Conclusions: Sensory and motor pudendal innervation to this specific pelvic region did not change after nerve sparing radical retropubic prostatectomy. Significant autonomic afferent denervation of the membranous urethral mucosa was present in most patients postoperatively. Impaired membranous urethral sensitivity seemed to be associated with urinary incontinence, particularly in patients with occasional urinary leakage. Damage to the afferent autonomic innervation may have a role in the continence mechanism after nerve sparing radical retropubic prostatectomy.
Resumo:
(Figure Presented) Mixed micelles of cetyltrimethylammonium bromide (CTABr) or dodecyltrimethylammonium bromide (DTABr) and the α-nucleophile, lauryl hydroxamic acid (LHA) accelerate dephosphorylation of bis(2,4-dinitrophenyl) phosphate (BDNPP) over the pH range 4-10. With a 0.1 mole fraction of LHA in DTABr or CTABr, dephosphorylation of BDNPP is approximately 10 4-fold faster than its spontaneous hydrolysis, and monoanionic LHA - is the reactive species. The results are consistent with a mechanism involving concurrent nucleophilic attack by hydroxamate ion (i) on the aromatic carbon, giving an intermediate that decomposes to undecylamine and 2,4-dinitrophenol, and (ii) at phosphorus, giving an unstable intermediate that undergoes a Lossen rearrangement yielding a series of derivatives including N,N-dialkylurea, undecylamine, undecyl isocyanate, and carbamyl hydroxamate. © 2009 American Chemical Society.
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
The [Mn4 IVO5(terpy)4(H 2O)2]6+ complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electronic transfer between dx2-y2 orbitals of the center metallic and pπ orbital of the ligand, which show great complexity of the system due to orbitals overlap present in octahedral complex of the metal-μ-oxo. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in ITO/glass electrode for better characterization of polymer was also performed. ©The Electrochemical Society.
Possible mechanism by which zinc protects the testicular function of rats exposed to cigarette smoke
Resumo:
Background: The aim of this study was to evaluate the changes in testicular function of rats due to cigarette smoke exposure and the possible mechanism by which zinc protects against these alterations. Methods: MaleWistar rats (60 days old) were randomly divided into 3 groups: control (G1, n = 10); exposed to cigarette smoke (G2, n = 10; 20 cigarettes/day/9 weeks) and exposed to cigarette smoke and supplemented with zinc (G3, n = 8; 20 cigarettes/day/9 weeks; 20 mg/kg zinc chloride daily for 9 weeks, by gavage). After the treatment period, the animals were euthanized, and materials were collected for analyses. Results: G2 rats showed a reduction in body mass; impaired sperm concentration, motility, morphology and vitality; and increased malonaldehyde and thiol group levels and superoxide dismutase activity as compared to G1. Zinc prevented the reduction of sperm concentration and the excessive increase of lipid peroxidation and induced an increase in plasma testosterone levels, wet weight of testis and thiol group concentration. Conclusions: Exposure to cigarette smoke led to harmful effects on testicular function at least partially due to the exacerbation of oxidative stress. Supplementary zinc had an important modulator/protector effect on certain parameters. The mechanism of zinc protection can be through an increase of SH concentration. Thus, zinc supplementation may be a promising addition to conventional treatments for male infertility related to smoking. Copyright © 2012 by Institute of Pharmacology Polish Academy of Sciences.
Resumo:
This paper reports our initial research to obtain SrWO4 microcrystals by the injection of ions into a hot aqueous solution and their photocatalytic (PC) properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The shape and average size of these SrWO 4 microcrystals were observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In addition, we have investigated the PC activity of microcrystals for the degradation of rhodamine B (RhB) and rhodamine 6G (Rh6G) dyes. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy confirmed that SrWO4 microcrystals have a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 12 Raman-active modes in a range from 50 to 1000 cm-1. FE-SEM and TEM images suggested that the SrWO4 microcrystals (rice-like - 95%; star-, flower-, and urchin-like - 5%) were formed by means of primary/secondary nucleation events and self-assembly processes. Based on these FE-SEM/TEM images, a crystal growth mechanism was proposed and discussed in details in this work. Finally, a good PC activity was first discovered of the SrWO4 microcrystals for the degradation of RhB after 80 min and Rh6G after 50 min dyes under ultraviolet-light, respectively. © 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder.
Resumo:
Lead molybdate (PbMoO4) crystals were synthesized by the co-precipitation method at room temperature and then processed in a conventional hydrothermal (CH) system at low temperature (70 °C for different times). These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, micro-Raman (MR) and Fourier transformed infrared (FT-IR) spectroscopies. Field emission scanning electron microscopy images were employed to observe the shape and monitor the crystal growth process. The optical properties were investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) measurements. XRD patterns and MR spectra indicate that these crystals have a scheelite-type tetragonal structure. Rietveld refinement data possibilities the evaluation of distortions in the tetrahedral [MoO 4] clusters. MR and FT-IR spectra exhibited a high mode ν1(Ag) ascribed to symmetric stretching vibrations as well as a large absorption band with two modes ν3(Eu and Au) related to anti-symmetric stretching vibrations in [MoO 4] clusters. Growth mechanisms were proposed to explain the stages involved for the formation of octahedron-like PbMoO4 crystals. UV-Vis absorption spectra indicate a reduction in optical band gap with an increase in the CH processing time. PL properties of PbMoO4 crystals have been elucidated using a model based on distortions of tetrahedral [MoO4] clusters due to medium-range intrinsic defects and intermediary energy levels (deep and shallow holes) within the band gap. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.