890 resultados para Supramolecular block copolymers
Resumo:
Two cis-related palladium(II) complexes [PdCl(2)(PPh(3))(tu)] (1) and [PdCl(2)(tmen)] (2) {PPh(3) = triphenylphosphine, tu = thiourea, tmen = N,N,N,N-tetramethylethylenediamine} have been synthesized and characterized by elemental analysis, IR and NMR spectroscopies, and single crystal X-ray diffraction. In 1, N-H center dot center dot center dot Cl hydrogen bonds are responsible for the formation of a dimer which connects to an adjacent one through weak C-H center dot center dot center dot Cl interactions, yielding 1D tapes. The crystal packing of compound 2 consists of zigzag ribbons of [PdCl(2)(tmen)] self-assembled by C-H center dot center dot center dot Cl hydrogen bonds which also holds the chains together, giving rise to a 2D layered structure. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The binding of the cations thallium(I), calcium(II) and terbium(III) to methyl methacrylate-methacrylic acid copolymers with different fractions of acid groups (x) has been studied in aqueous solution at, various pH values using the fluorescence of covalently bonded 9-vinyl anthracene as a probe. In all cases, the extent of binding increases as a function of the charge of the polymer with either increasing fraction of carboxylic acids or of pH. However, differences are observed in the behavior of the three cations, With Tl(I), quenching of the anthracene group fluorescence is observed. indicating that the thallium(I) approaches the probe and suggesting that the alkylanthracene is probably in a relatively polar region. Binding constants have been determined from anthracene quenching data and from studies with the fluorescent-probe sodium pyrenetetrasulfonate, Good agreement is obtained between the two methods, and values for the binding constants increase from 250 to 950 M-1 as x increases from 0.39 to 1. It is suggested that the cation is held in the polyelectrolyte domain, partly by Debye-Huckel effects and partly by more specific interactions. Stronger binding is found with calcium(II) and terbium(III), and in this case increases in fluorescence intensity are observed on complexation due to the anthracene group being in a more hydrophobic region, probably as a result of conformational changes in the polymer chain. In the former case the stoichiometry of the interaction was determined from the fluorescence data to involve two carboxylate groups bound per calcium. Association constants were found using murexide as an indicator of free calcium to vary from 8400 to 37 000 M-1 as x increases from 0.39 to 1. It is suggested that in this case specific calcium(II)-carboxylate interactions contribute to the binding. With terbium(III), a greater increase in the probe fluorescence intensity was observed than with calcium, and it is suggested that the interaction with the polymer is even stronger, leading to a more pronounced conformational change in the polymer. It is proposed that the terbium(III) interacts with sis carboxylic groups on the polymer chain, with three being coordinated and three attracted by electrostatic interactions.
Resumo:
Nonparametric simple-contrast estimates for one-way layouts based on Hodges-Lehmann estimators for two samples and confidence intervals for all contrasts involving only two treatments are found in the literature.Tests for such contrasts are performed from the distribution of the maximum of the rank sum between two treatments. For random block designs, simple contrast estimates based on Hodges-Lehmann estimators for one sample are presented. However, discussions concerning the significance levels of more complex contrast tests in nonparametric statistics are not well outlined.This work aims at presenting a methodology to obtain p-values for any contrast types based on the construction of the permutations required by each design model using a C-language program for each design type. For small samples, all possible treatment configurations are performed in order to obtain the desired p-value. For large samples, a fixed number of random configurations are used. The program prompts the input of contrast coefficients, but does not assume the existence or orthogonality among them.In orthogonal contrasts, the decomposition of the value of the suitable statistic for each case is performed and it is observed that the same procedure used in the parametric analysis of variance can be applied in the nonparametric case, that is, each of the orthogonal contrasts has a chi(2) distribution with one degree of freedom. Also, the similarities between the p-values obtained for nonparametric contrasts and those obtained through approximations suggested in the literature are discussed.
Resumo:
The temperature dependence has been investigated for the photoinduced birefringence in Langmuir-Blodgett (LB) films from the azocopolymer 4-[N- ethyl -N-(2-hydroxyethyl)] amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) mixed with cadmium stearate. The buildup and relaxation of the birefringence in the range from 20 to 296 K were fitted with a Kohlrausch-Williams-Watts (KWW) function, with a beta-value of 0.78-0.98 for the build-up and 0.18-0.27 for the decay. This is consistent with a distribution of time constants for the kinetics of the birefringence processes. The maximum birefringence increased with increasing temperature up to 120 K because the free volume fluctuation also increased with temperature. Above 120 K, the birefringence decreased with temperature as thermal diffusion dominates. In the latter range of temperature, an Arrhenius behavior is inferred for both build-up and decay of birefringence. In each case two activation energies were obtained: 0.8 and 5 kJ/mol for the build-up and 10 and 30 kJ/mol for the decay. The energies for the build-up are much lower than those associated with motion of the polymer chain, which means that the dynamics is governed by the orientation of the chromophores. For the decay, local motion of lateral groups of the polymer chains becomes important as the activation energies are within the range of gamma-relaxation energies. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper is aimed at addressing the differences observed in film properties when poly(vinylidene fluoride-trifluorethylene) P(VDF-TrFE) films are fabricated using distinct methods. Samples were obtained either from casting a solution or by compression molding from a molten phase and characterized by differential scanning calorimetry (DSC). It is shown that the main differences between melt-solidified and cast films arise from the thermal treatment inherent in the former samples.
Resumo:
The interaction between sodium dodecylsulfate (SDS) and acrylic acid (AA)-ethyl methacrylate (EMA) copolymers has been investigated using steady state fluorescence and conductimetric measurements to assess the effect of the polymer composition on the aggregation process. Micropolarity studies using the ratio between the emission intensities of the vibronic bands of pyrene (I-1/I-3) and the shift of the fluorescence emission of pyrene-3-carboxaldehyde show, that the interaction of SDS with AA-EMA copolymers occurs at surfactant concentrations smaller than that observed for the pure surfactant in water and depends on the copolymer composition. The increase of ethyl methacrylate in the copolymers lowers the critical aggregation concentration (CAC) due to the larger hydrophobic character of the polymer backbone. The formation of aggregates on the macromolecule is induced mainly, by hydrophobic interactions, but the process is also influenced by the ionic strength due to the counter-ions of the polyelectrolyte.
Resumo:
Background: The use of botulinum toxin A (BT-A) for the treatment of lower limb spasticity is common in children with cerebral palsy (CP). Following the administration of BT-A, physical therapy plays a fundamental role in potentiating the functionality of the child. The balance deficit found in children with CP is mainly caused by muscle imbalance (spastic agonist and weak antagonist). Neuromuscular electrical stimulation (NMES) is a promising therapeutic modality for muscle strengthening in this population. The aim of the present study is to describe a protocol for a study aimed at analyzing the effects of NMES on dorsiflexors combined with physical therapy on static and functional balance in children with CP submitted to BT-A.Methods/Design: Protocol for a prospective, randomized, controlled trial with a blinded evaluator. Eligible participants will be children with cerebral palsy (Levels I, II and III of the Gross Motor Function Classification System) between five and 12 years of age, with independent gait with or without a gait-assistance device. All participants will receive BT-A in the lower limbs (triceps surae). The children will then be randomly allocated for either treatment with motor physical therapy combined with NMES on the tibialis anterior or motor physical therapy alone. The participants will be evaluated on three occasions: 1) one week prior to the administration of BT-A; 2) one week after the administration of BT-A; and 3) four months after the administration of BT-A (end of intervention). Spasticity will be assessed by the Modified Ashworth Scale and Modified Tardieu Scale. Static balance will be assessed using the Medicapteurs Fusyo pressure platform and functional balance will be assessed using the Berg Balance Scale.Discussion: The aim of this protocol study is to describe the methodology of a randomized, controlled, clinical trial comparing the effect of motor physical therapy combined with NMES on the tibialis anterior muscle or motor physical therapy alone on static and functional balance in children with CP submitted to BT-A in the lower limbs. This study describes the background, hypotheses, methodology of the procedures and measurement of the results.
Resumo:
A critical revision of the literature was made regarding the stability of β-lactam antibiotics in the presence of surfactants. The factors involved in the drug decomposition were analyzed in the development of the discussion. The analysis has indicated that some organized systems obtained from surfactants can be used to control rates and mechanisms of antibiotic decomposition. These organized systems can also be used to obtain specific information about the drug reactivity in a microenvironment similar to the site of pharmacological effect.
Resumo:
The morphological, mechanical and rheological properties of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with MMA-MA [poly(methyl methacrylate-comaleic anhydride)] copolymers were studied. A twin screw extruder was used for melt-blended the polymers and the injection moulding process was used to mold the samples. The main focus was on nylon 6/ ABS blends compatibilized with one MMA-MA copolymer. This copolymer has PMMA segments that appear to be miscible with the styrene-acrylonitrile (SAN) phase of ABS and the anhydride groups can react with amine end groups of the nylon 6 (Ny6) to form graft copolymers at the interface between Ny6 and ABS rich phases. Tensile and impact and morphological properties were enhanced by the incorporation of this copolymer. Transmission electron microscopy (TEM) observations revealed that the ABS domains are finely dispersed in nylon 6 matrix and led to the lowest ductile-brittle transition temperatures and highest impact properties. It can be concluded that the MMA-MA copolymer is an efficient alternative for the reactive compatibilization and can be used as a compatibilizer for nylon 6/ABS blends.© 2003 Kluwer Academic Publishers.
Resumo:
Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2005 Springer Science + Business Media, Inc.
Resumo:
Purpose: The objective of this study was to evaluate the position of the mandibular lingula (ML) to provide data for inferior alveolar nerve block techniques in children. Methods: One hundred fifty-four panoramic radiographs of 7- to 10-year-old boys and girls were analyzed. Measurements were taken from the ML to the occlusal plane, and the percentile distances of the ML to ramal borders were determined. Results: The distance between the ML and the occlusal plane showed a gradual increase, but only in the male group was it statistically significant. MLs ratio position on the ramus remained constant in all analyzed groups. In the 7-year-old group, the ML was observed above the occlusal plane in 70% of girls and 55% of boys. That percentage reached 85% of all children by age 10. Conclusions: The mandibular lingula's ratio position remained constant. Inferior alveolar anesthesia should be administered at least 6 mm above the occlusal plane in 7- to 8-year-old children, while 10 mm could be indicated for 9- to 10-year-old children. The mandibular lingula should be considered a reliable reference for further studies of inferior alveolar nerve block techniques.
Resumo:
A series of segmented poly(urethane-urea)s containing 1,3,5 triazine in the hard block and hexamethylene spacers in the soft block was prepared. The hard to soft segment ratio was varied systematically, to afford a series of polymers in which the chromophore concentration varied from 4.2% to 18.1%. Although triazine emission is located in the UV region, the films with higher content of the chromophore emitted a visible blue light (425 nm) when excited at the very red-edge of the absorption band. The photophysical properties of the materials were strongly dependent on the relative amount of triazine moieties along the main chain. Isolated moieties emit in copolymers with small amount of triazine groups, indicating that even though in solid state, these moieties tend to be apart. Two photophysical consequences were observed when the amount of triazine increases: there is some energy transfer process involving isolated moieties with consequent decrease of the lifetime and an additional red-edge emission attributed to aggregated lumophores. The mono-exponential decay observed for the isolated form is substituted by a bi-exponential decay of the aggregated species. The materials were not strong emitters, but since the N-containing triazine moieties are good electron transport groups, the polymers have potential application as electron transport enhancers in various applications. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The compound dysprosium(III) 2-metoxybenzoate, {[Dy(2-MeO-Bz)2μ-(2-MeO-Bz)(H2O)2]2·4H2O}n (2-MeO-Bz = 2- methoxybenzoate), was synthesized from a reaction mixture containing DyCl3 and Na(2-MeO-Bz), and characterized by single-crystal X-ray diffraction. The molecular structure showed dinuclear units in which each Dy(III) ion is coordinated by nine oxygen atoms. The carboxylato groups are bound to the dysprosium centers in two modes: bidentate chelating and tridentate chelating-bridging. Besides this, the occurrence of hydrogen bonds involving a coordinated water molecule and carboxylato groups leads to the formation of helicoidal chains along the crystal lattice, resulting in a supramolecular one-dimensional polymer. 2008 © The Japan Society for Analytical Chemistry.