674 resultados para Superfamily
Resumo:
Peroxisome proliferators cause rapid and coordinated transcriptional activation of genes encoding peroxisomal beta-oxidation system enzymes by activating peroxisome proliferator-activated receptor (PPAR) isoform(s). Since the thyroid hormone (T3; 3,3',5-triiodothyronine) receptor (TR), another member of the nuclear hormone receptor superfamily, regulates a subset of fatty acid metabolism genes shared with PPAR, we examined the possibility of interplay between peroxisome proliferator and T3 signaling pathways. T3 inhibited ciprofibrate-induced luciferase activity as well as the endogenous peroxisomal beta-oxidation enzymes in transgenic mice carrying a 3.2-kb 5'-flanking region of the rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene fused to the coding region of luciferase. Transfection assays in hepatoma H4-II-E-C3 and CV-1 cells indicated that this inhibition is mediated by TR in a ligand-dependent fashion. Gel shift assays revealed that modulation of PPAR action by TR occurs through titration of limiting amounts of retinoid X receptor (RXR) required for PPAR activation. Increasing amounts of RXR partially reversed the inhibition in a reciprocal manner; PPAR also inhibited TR activation. Results with heterodimerization-deficient TR and PPAR mutants further confirmed that interaction between PPAR and TR signaling systems is indirect. These results suggest that a convergence of the peroxisome proliferator and T3 signaling pathways occurs through their common interaction with the heterodimeric partner RXR.
Resumo:
Although most nuclear hormone receptors are ligand-dependent transcriptional activators, certain members of this superfamily, such as thyroid hormone receptor (TR) and retinoic acid receptor (RAR), are involved in transcriptional repression. The silencing function of these receptors has been localized to the ligand binding domain (LBD). Previously, we demonstrated that overexpression of either the entire LBD or only the N-terminal region of the LBD (amino acids 168-259) is able to inhibit the silencing activity of TR. From this result we postulated the existence of a limiting factor (corepressor) that is necessary for TR silencing activity. To support this hypothesis, we identified amino acids in the N-terminal region of the LBD of TR that are important for the corepressor interaction and for the silencing function of TR. The silencing activity of TR was unaffected by overexpression of the LBD of mutant TR (V174A/D177A), suggesting that valine at position 174 and/or aspartic acid at position 177 are important for corepressor interaction. This mutant receptor protein, V174/D177, also lost the ability to silence target genes, suggesting that these amino acids are important for silencing function. Control experiments indicate that this mutant TR maintains its wild-type hormone binding and transactivation functions. These findings further strengthen the idea that the N-terminal region of the LBD of TR interacts with a putative corepressor protein(s) to achieve silencing of basal gene transcription.
Resumo:
The histones of all eukaryotes show only a low degree of primary structure homology, but our earlier crystallographic results defined a three-dimensional structural motif, the histone fold, common to all core histones. We now examine the specific architectural patterns within the fold and analyze the nature of the amino acid residues within its functional segments. The histone fold emerges as a fundamental protein dimerization motif while the differentiations of the tips of the histone dimers appear to provide the rules of core octamer assembly and the basis for nucleosome regulation. We present evidence for the occurrence of the fold from archaebacteria to mammals and propose the use of this structural motif to define a distinct family of proteins, the histone fold superfamily. It appears that evolution has conserved the conformation of the fold even through variations in primary structure and among proteins with various functional roles.
Resumo:
Thy-1, a member of the immunoglobulin superfamily, is one of the most abundant glycoproteins on mammalian neurons. Nevertheless, its role in the peripheral or central nervous system is poorly understood. Certain monoclonal antibodies to Thy-1 promote neurite outgrowth by rodent central nervous system neurons in vitro, suggesting that Thy-1 functions, in part, by modulating neurite outgrowth. We describe a binding site for Thy-1 on astrocytes. This Thy-1-binding protein has been characterized by immunofluroesence with specific anti-idiotype monoclonal antibodies and by three competitive binding assays using (i) anti-idiotype antibodies, (ii) purified Thy-1, and (iii) Thy-1-transfected cells. The Thy-1-binding protein may participate in axonal or dendritic development in the nervous system.
Resumo:
In a search for retinoid X receptor-like molecules in Drosophila, we have identified an additional member of the nuclear receptor superfamily, XR78E/F. In the DNA-binding domain, XR78E/F is closely related to the mammalian receptor TR2, as well as to the nuclear receptors Coup-TF and Seven-up. We demonstrate that XR78E/F binds as a homodimer to direct repeats of the sequence AGGTCA. In transient transfection assays, XR78E/F represses ecdysone signaling in a DNA-binding-dependent fashion. XR78E/F has its highest expression in third-instar larvae and prepupae. These experiments suggest that XR78E/F may play a regulatory role in the transcriptional cascade triggered by the hormone ecdysone in Drosophila.
Resumo:
Nuclear hormone receptors are transcription factors that require multiple protein-protein interactions to regulate the expression of their target genes. Using the yeast two-hybrid system, we identified a protein, thyroid hormone receptor uncoupling protein (TRUP), that specifically interacts with a region of the human thyroid hormone receptor (TR) consisting of the hinge region and the N-terminal portion of the ligand binding domain in a hormone-independent manner. Interestingly, TRUP inhibits transactivation by TR and the retinoic acid receptor but has no effect on the estrogen receptor or the retinoid X receptor in mammalian cells. We also demonstrate that TRUP exerts its action on TR and retinoic acid receptor by interfering with their abilities to interact with their DNA. TRUP represents a type of regulatory protein that modulates the transcriptional activity of a subclass of the nuclear hormone receptor superfamily by preventing interaction with their genomic response elements.
Resumo:
Myosin VIIa is a newly identified member of the myosin superfamily of actin-based motors. Recently, the myosin VIIa gene was identified as the gene defective in shaker-1, a recessive deafness in mice [Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K.A., Antonio, M., Beisel, K.W., Steel, K.P. & Brown, S.D.M. (1995) Nature (London) 374, 62-64], and in human Usher syndrome type 1B, an inherited disease characterized by congenital deafness, vestibular dysfunction, and retinitis pigmentosa [Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M.D., Kelley, P.M., Kimberling, W.J., Wagenaar, M., Levi-Acobas, F., Larget-Piet, D., Munnich, A., Steel, K.P., Brown, S.D.M. & Petit, C. (1995) Nature (London) 374, 60-61]. To understand the normal function of myosin VIIa and how it could cause these disease phenotypes when defective, we generated antibodies specific to the tail portion of this unconventional myosin. We found that myosin VIIa was expressed in cochlea, retina, testis, lung, and kidney. In cochlea, myosin VIIa expression was restricted to the inner and outer hair cells, where it was found in the apical stereocilia as well as the cytoplasm. In the eye, myosin VIIa was expressed by the retinal pigmented epithelial cells, where it was enriched within the apical actin-rich domain of this cell type. The cell-specific localization of myosin VIIa suggests that the blindness and deafness associated with Usher syndrome is due to lack of proper myosin VIIa function within the cochlear hair cells and the retinal pigmented epithelial cells.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor beta 3 (TGF-beta 3) are members of the TGF-beta superfamily with high neurotrophic activity on cultured nigral dopamine neurons. We investigated the effects of intracerebral administration of GDNF and TGF-beta 3 on the delayed cell death of the dopamine neurons in the rat substantia nigra following 6-hydroxydopamine lesions of dopaminergic terminals in the striatum. Fluorescent retrograde tracer injections and tyrosine hydroxylase immunocytochemistry demonstrated nigral degeneration with an onset 1 week after lesion, leading to extensive death of nigral neurons 4 weeks postlesion. Administration of recombinant human GDNF for 4 weeks over the substantia nigra at a cumulative dose of 140 micrograms, starting on the day of lesion, completely prevented nigral cell death and atrophy, while a single injection of 10 micrograms 1 week postlesion had a partially protective effect. Continuous administration of TGF-beta 3, starting on the day of lesion surgery, did not affect nigral cell death or atrophy. These findings support the notion that GDNF, but not TGF-beta 3, is a potent neurotrophic factor for nigral dopamine neurons in vivo.
Resumo:
The retinoid X receptor (RXR) participates in a wide array of hormonal signaling pathways, either as a homodimer or as a heterodimer, with other members of the steroid and thyroid hormone receptor superfamily. In this report the ligand-dependent transactivation function of RXR has been characterized, and the ability of RXR to interact with components of the basal transcription machinery has been examined. In vivo and in vitro experiments indicate the RXR ligand-binding domain makes a direct, specific, and ligand-dependent contact with a highly conserved region of the TATA-binding protein. The ability of mutations that reduce ligand-dependent transcription by RXR to disrupt the RXR-TATA-binding protein interaction in vivo and in vitro suggests that RXR makes direct contact with the basal transcription machinery to achieve activation.
Resumo:
We report here that the activation of the interleukin 1 beta (IL-1 beta)-converting enzyme (ICE) family is likely to be one of the crucial events of tumor necrosis factor (TNF) cytotoxicity. The cowpox virus CrmA protein, a member of the serpin superfamily, inhibits the enzymatic activity of ICE and ICE-mediated apoptosis. HeLa cells overexpressing crmA are resistant to apoptosis induced by Ice but not by Ich-1, another member of the Ice/ced-3 family of genes. We found that the CrmA-expressing HeLa cells are resistant to TNF-alpha/cycloheximide (CHX)-induced apoptosis. Induction of apoptosis in HeLa cells by TNF-alpha/CHX is associated with secretion of mature IL-1 beta, suggesting that an IL-1 beta-processing enzyme, most likely ICE itself, is activated by TNF-alpha/CHX stimulation. These results suggest that one or more members of the ICE family sensitive to CrmA inhibition are activated and play a critical role in apoptosis induced by TNF.
Resumo:
The positive effects of Myc on cellular growth and gene expression are antagonized by activities of another member of the Myc superfamily, Mad. Characterization of the mouse homolog of human mad on the structural level revealed that domains shown previously to be required in the human protein for anti-Myc repression, sequence-specific DNA-binding activity, and dimerization with its partner Max are highly conserved. Conservation is also evident on the biological level in that both human and mouse mad can antagonize the ability of c-myc to cooperate with ras in the malignant transformation of cultured cells. An analysis of c-myc and mad gene expression in the developing mouse showed contrasting patterns with respect to tissue distribution and developmental stage. Regional differences in expression were more striking on the cellular level, particularly in the mouse and human gastrointestinal system, wherein c-Myc protein was readily detected in immature proliferating cells at the base of the colonic crypts, while Mad protein distribution was restricted to the postmitotic differentiated cells in the apex of the crypts. An increasing gradient of Mad was also evident in the more differentiated subcorneal layers of the stratified squamous epithelium of the skin. Together, these observations support the view that both downregulation of Myc and accumulation of Mad may be necessary for progression of precursor cells to a growth-arrested, terminally differentiated state.
Resumo:
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily. Several members of this family have been shown to transduce their signals through binding to type I and type II serine-(threonine) kinase receptors. Here we report the cDNA cloning and characterization of a human type II receptor for BMPs (BMPR-II), which is distantly related to DAF-4, a BMP type II receptor from Caenorhabditis elegans. In transfected COS-1 cells, osteogenic protein (OP)-1/BMP-7, and less efficiently BMP-4, bound to BMPR-II. BMPR-II bound ligands only weakly alone, but the binding was facilitated by the presence of previously identified type I receptors for BMPs. Binding of OP-1/BMP-7 to BMPR-II was also observed in nontransfected cell lines. Moreover, a transcriptional activation signal was transduced by BMPR-II in the presence of type I receptors after stimulation by OP-1/BMP-7.
Resumo:
In Drosophila the response to the hormone ecdysone is mediated in part by Ultraspiracle (USP) and ecdysone receptor (EcR), which are members of the nuclear receptor superfamily. Heterodimers of these proteins bind to ecdysone response elements (EcREs) and ecdysone to modulate transcription. Herein we describe Drosophila hormone receptor 38 (DHR38) and Bombyx hormone receptor 38 (BHR38), two insect homologues of rat nerve growth factor-induced protein B (NGFI-B). Although members of the NGFI-B family are thought to function exclusively as monomers, we show that DHR38 and BHR38 in fact interact strongly with USP and that this interaction is evolutionarily conserved. DHR38 can compete in vitro against EcR for dimerization with USP and consequently disrupt EcR-USP binding to an EcRE. Moreover, transfection experiments in Schneider cells show that DHR38 can affect ecdysone-dependent transcription. This suggests that DHR38 plays a role in the ecdysone response and that more generally NGFI-B type receptors may be able to function as heterodimers with retinoid X receptor type receptors in regulating transcription.
Resumo:
Interleukin 12 (IL-12) is an important immunoregulatory cytokine whose receptor is a member of the hematopoietin receptor superfamily. We have recently demonstrated that stimulation of human T and natural killer cells with IL-12 induces tyrosine phosphorylation of the Janus family tyrosine kinase JAK2 and Tyk2, implicating these kinases in the immediate biochemical response to IL-12. Recently, transcription factors known as STATs (signal transducers and activators of transcription) have been shown to be tyrosine phosphorylated and activated in response to a number of cytokines that bind hematopoietin receptors and activate JAK kinases. In this report we demonstrate that IL-12 induces tyrosine phosphorylation of a recently identified STAT family member, STAT4, and show that STAT4 expression is regulated by T-cell activation. Furthermore, we show that IL-12 stimulates formation of a DNA-binding complex that recognizes a DNA sequence previously shown to bind STAT proteins and that this complex contains STAT4. These data, and the recent demonstration of JAK phosphorylation by IL-12, identify a rapid signal-transduction pathway likely to mediate IL-12-induced gene expression.
Resumo:
When expressed as part of a glutathione S-transferase fusion protein the NH2-terminal domain of the lymphocyte cell adhesion molecule CD2 is shown to adopt two different folds. The immunoglobulin superfamily structure of the major (85%) monomeric component has previously been determined by both x-ray crystallography and NMR spectroscopy. We now describe the structure of a second, dimeric, form present in about 15% of recombinant CD2 molecules. After denaturation and refolding in the absence of the fusion partner, dimeric CD2 is converted to monomer, illustrating that the dimeric form represents a metastable folded state. The crystal structure of this dimeric form, refined to 2.0-A resolution, reveals two domains with overall similarity to the IgSF fold found in the monomer. However, in the dimer each domain is formed by the intercalation of two polypeptide chains. Hence each domain represents a distinct folding unit that can assemble in two different ways. In the dimer the two domains fold around a hydrophilic interface believed to mimic the cell adhesion interaction at the cell surface, and the formation of dimer can be regulated by mutating single residues at this interface. This unusual misfolded form of the protein, which appears to result from inter- rather than intramolecular interactions being favored by an intermediate structure formed during the folding process, illustrates that evolution of protein oligomers is possible from the sequence for a single protein domain.