976 resultados para Summer theater.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New pollen based reconstructions of summer (May-to-August) and winter (December-to-February) temperatures between 15 and 8 ka BP along a S-N transect in the Baltic-Belarus (BB) area display trends in temporal and spatial changes in climate variability. These results are completed by two chironomid-based July mean temperature reconstructions. The magnitude of change compared with modern temperatures was more prominent in the northern part of BB area. The 4 C degrees winter and 2 C degrees summer warming at the start of GI-1 was delayed in the BB area and Lateglacial maximum temperatures were reached at ca 13.6 ka BP, being 4 C degrees colder than the modern mean. The Younger Dryas cooling in the area was 5 C degrees colder than present, as inferred by all proxies. In addition, our analyses show an early Holocene divergence in winter temperature trends with modern values reaching 1 ka earlier (10 ka BP) in southern BB compared to the northern part of the region (9 ka BP).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Welsch (Projektbearbeiter): Abdruck der österreichischen Nationalhymne in einer bewußt prohabsburgischen und anti-großdeutschen Fassung

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Welsch (Projektbearbeiter): Satirische Kommentierung der Politik des gestürzten Ministeriums Auerswald-Hansemann in Form einer Theaterkritik des Kulissenschiebers Hähnchen (fiktiv). Plädoyer für eine demokratischere Politik des neuen Ministeriums: "Vor Allem aber wähle man en jutes, zeitjemäßes Stück, worin och das Volk ene jute Rolle hat ... "

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Welsch (Projektbearbeiter): Karikatur auf die sich in kleinlichen Streitigkeiten verzettelnde Frankfurter Nationalversammlung am Beispiel einer Auseinandersetzung zwischen dem Präsidenten Gagern und dem Abgeordneten Rösler

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature reconstructions for the end of the Pleistocene and the first half of the Holocene based on biotic proxies are rare for inland Europe around 49°N. We analysed a 7 m long sequence of lake deposits in the Vihorlat Mts in eastern Slovakia (820 m a.s.l.). Chironomid head capsules were used to reconstruct mean July temperature (TJuly), other proxies (diatoms, green algae, pollen, geochemistry) were used to reconstruct local environmental changes that might have affected the climate reconstruction, such as epilimnetic total phosphorus concentrations (TP), lake level changes and development of surrounding vegetation. During the Younger Dryas (YD), temperature fluctuated between 7 and 11 °C, with distinct, decadal to centennial scale variations, that agree with other palaeoclimate records in Europe such as δ18O content in stalagmites or Greenland ice cores. The results indicate that the site was somewhat colder than expected from the general south-to-north YD temperature gradient within Europe, possibly because of north-facing exposition. The warmer phases of the YD were characterised by low water level or even complete desiccation of the lake (12,200-12,400 cal yr BP). At the Late-Glacial/Holocene transition TJuly steeply increased from from 11 to 15.5 °C (11,700-11,400 cal yr BP) - the highest TJuly for entire sequence. This rapid climate change was reflected by all proxies as a compositional change and increasing species diversity. The open woodlands of Pinus, Betula, Larix and Picea were replaced by broad-leaved temperate forests dominated by Betula, later by Ulmus and finally by Corylus (ca 9700 cal yr BP). At the same time, input of eroded coarse-grained material into the lake decreased and organic matter (LOI) and biogenic silica increased. The Early-Holocene climate was rather stable till 8700 cal yr BP, with temporary decrease in TJuly around 11,200 cal yr BP. The lake was productive with a well-developed littoral, as indicated by both diatoms and chironomids. A distinct decline of TJuly to 10 °C between 8700 and 8000 cal yr BP was associated with decreasing chironomid diversity and increasing climate moistening indicated by pollen. Tychoplanktonic and phosphorus-demanding diatoms increased which might be explained by hydrological and land-cover changes. Later, a gradual warming started after 7000 cal yr BP and representation of macrophytes, periphytic diatoms and littoral chironomids increased. Our results suggest that the Holocene thermal maximum was taking place unusually early in the Holocene at our study site, but its timing might be affected by topography and mesoclimate. We further demonstrated that temperature changes had coincided with variations in local hydrology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using miniature thermistors with integrated data loggers, the decrease in summer lake surface water temperature (LSWT) with increasing altitude a.s.l. was investigated in 10 Swiss Alpine lakes located between 613 m a.s.l. and 2339 m a.s.l. The LSWTs exhibit essentially the same short-term structure as regional air temperature, but are about 3 to 5°C higher than the air temperature at the altitude of the lake. LSWTs decrease approximately linearly with increasing altitude at a rate slightly greater than the surface air temperature lapse rate. Diel variations in LSWT are large, implying that single water temperature measurements are un- likely to be representative of the mean. Local factors will affect LSWT more than they affect air temperature, possibly resulting in severe distortion of the empirical relationship between the two. Several implications for paleoclimate reconstruction studies result. (1) Paleolimnologically reconstructed LSWTs are likely to be higher than the air temperatures prevailing at the altitude of the lake. (2) Lakes used for paleoclimate reconstruction should be selected to minimize local effects on LSWT. (3) The calibration of organism-specific quantitative paleotemperature inference models should not be based on single water temperature measurements. (4) Consideration should be given to calibrating such models directly against air temperature rather than water temperature. (5) The primary climate effect on the aquatic biota of high-altitude lakes may be mediated by the timing of the ice cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Felix Stössinger

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Felix Stössinger