970 resultados para Suites (Orchestra)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On Leg 121 of the Ocean Drilling Program, we recovered basaltic rocks from a total of three basement sites in the southern, central, and northern regions of Ninetyeast Ridge. These new sites complement the previous four basement holes drilled during Legs 22 and 26 of the Deep Sea Drilling Project, and confirm the predominantly tholeiitic, light rare earth element-enriched character of the basalts that cap the ridge. The basalts show marked iron enrichment; ferrobasalts occur at Sites 214 and 216 and oceanic andesites at Site 253. All of the basalts recovered during Leg 121 are altered, and range from aphyric olivine tholeiites (Site 756), to strongly plagioclase-phyric basalts (Site 757). Basalts from Site 758, which were clearly erupted in a submarine environment (pillow basalts are present in the section), are sparsely to strongly plagioclase-phyric. The basalts recovered at any one hole are isotopically homogeneous (except for the basalts from Site 758, which show a range of Pb isotopes), and it is possible to relate the magmas at any one site by high-level fractionation processes. However, there are significant variations in isotope ratios and highly incompatible element ratios between sites, which suggest that the mantle source for the ridge basalts was compositionally variable. Such variation, in view of the large volume of magmatic products that form the ridge system, is not surprising. There is not, however, a systematic variation in basalt composition along the ridge. We agree with previous models that relate Ninetyeast Ridge to a mantle plume in the southern Indian Ocean. The tholeiitic, iron-enriched, and voluminous character of the ridge basalts is typical of oceanic islands associated with plumes on or near a mid-ocean ridge (e.g., Iceland, Galapagos Islands, and St. Paul/Amsterdam islands). The absence of recovered alkalic suites is inconsistent with an intraplate setting, such as the Hawaiian Islands or Kerguelen Island. Thus, the major element data, like the gravity data, strongly suggest that the ridge was erupted on or very close to an active spreading center. Isotopically, the most likely plume that created the excess magmatism on the Ridge is the Kerguelen-Heard plume system, but the Ninetyeast Ridge basalts do not represent a simple mixing of the Kerguelen plume and mid-ocean Ninetyeast Ridge basalt mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentrations of the platinum-group elements (PGE) Ir, Ru, Pt and Pd were determined in 11 abyssal peridotites from ODP Sites 895 and 920, as well in six ultramafic rocks from the Horoman peridotite body, Japan, which is generally thought to represent former asthenospheric mantle. Individual oceanic peridotites from ODP drill cores are characterized by variable absolute and relative PGE abundances, but the average PGE concentrations of both ODP suites are very similar. This indicates that the distribution of the noble metals in the mantle is characterized by small-scale heterogeneity and large-scale homogeneity. The mean Ru/Ir and Pt/Ir ratios of all ODP peridotites are within 15% and 3%, respectively, of CI-chondritic values. These results are consistent with models that advocate that a late veneer of chondritic material provided the present PGE budget of the silicate Earth. The data are not reconcilable with the addition of a significant amount of differentiated outer core material to the upper mantle. Furthermore, the results of petrogenetic model calculations indicate that the addition of sulfides derived from percolating magmas may be responsible for the variable and generally suprachondritic Pd/Ir ratios observed in abyssal peridotites. Ultramafic rocks from the Horoman peridotite have PGE signatures distinct from abyssal peridotites: Pt/Ir and Pd/Ir are correlated with lithophile element concentrations such that the most fertile lherzolites are characterized by non-primitive PGE ratios. This indicates that processes more complex than simple in-situ melt extraction are required to produce the geochemical systematics, if the Horoman peridotite formed from asthenospheric mantle with chondritic relative PGE abundances. In this case, the PGE results can be explained by melt depletion accompanied or followed by mixing of depleted residues with sulfides, with or without the addition of basaltic melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pliocene and Pleistocene volcanic glass fragments from Mariana Trough sediments at Sites 453 (16 samples) and 454 (4 samples), located near the western edge of the trough and just west of the spreading axis, respectively, have been analyzed for major elements with an electron microprobe. They derive from volcanic activity on the present Mariana active arc. The glasses from Site 453 are all tholeiitic with a wide range of SiO2 contents. Those less than 2 m.y. old have slightly lower TiO2 and higher K2O contents than the older ones. The glasses from Site 454 are all Pleistocene and resemble the younger glasses at Site 453. Major element compositions of the older basaltic glasses at Site 453 are similar to those of the Mariana Trough basalts drilled on Leg 60. Both older and younger suites of glasses differ from the composition of rocks exposed on the active arc, which are assumed to be younger than any of the samples studied (i.e., about 200,000 y.). A third suite is represented by the arc rocks exposed on the volcanic islands. These have a smaller range of SiO2 contents and contain more A12O3 but less K2O, TiO2, and FeO1 (total Fe as FeO) than the sediment glasses studied. Further, a plot of FeO1 against MgO for the arc rocks does not follow the island arc tholeiite trend of the trough sediment glasses. Using the major element compositions of the arc rocks and sediment glasses, we can recognize three phases of volcanic activity, as indicated. The first evidence of the oldest phase of activity occurs 5 Ma, about 4.5 m.y. after the trough started to form. The second commenced about 2 Ma, and the last, including present-day activity, began within the last 200,000 y. Initially the rocks had major element affinities with the tholeiitic Mariana Trough seafloor, but this influence declined as the trough widened.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 124, off the Philippines, volcanic material was recovered in deep-sea sediments dating from the late Oligocene in the Celebes Sea Basin, and from the early Miocene in the Sulu Sea Basin. Chemical and petrological studies of fallout ash deposits are used to characterize volcanic pulses and to determine their possible origin. All of the glass and mineral compositions belong to medium-K and high-K calc-alkaline arc-related magmatic suites including high-Al basalts, pyroxene-hornblende andesites, dacites, and rhyolites. Late Oligocene and early Miocene products may have originated from the Sunda arc or from the Sabah-Zamboanga old Sulu arc. Late early Miocene Sulu Sea tuffs originated from the Cagayan arc, whereas early late Miocene fallout ashes are attributed to the Sulu arc. A complex magmatic production is distinguished in the Plio-Quaternary with three sequences of basic to acidic lava suites. Early Pliocene strata registered an important activity in both Celebes Sea and Sulu Sea areas, from the newly born Sangihe arc (low-alumina andesite series) and from the Sulu, Zamboanga, and Negros arcs (high-alumina basalt series and high-K andesite series). In the late Pliocene and the early Pleistocene, renewal of activity affects the Sangihe-Cotobato arc as well as the Sulu and Negros arcs (same magmatic distinctions). The last volcanic pulse took place in the late Pleistocene with revival of all the present arc systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositions, mineralogies, and textures of gabbros recovered in polymict breccias in Hole 453 indicate that they are the cumulus assemblages of calc-alkalic crystal fractional on that occurred beneath the West Mariana Ridge. They are among a class of gabbros known only from other calc-alkalic associations (e.g., the Lesser Antilles and the Peninsular Ranges batholith of Southern California) and differ from gabbros of stratiform complexes, ophiolites, and the ocean crust. Particularly abundant in the Hole 453 breccias are olivine-bearing gabbros with extremely calcic Plagioclase (An94-97) but with fairly iron-rich olivines (Fo76-77). Other gabbros contain biotite and amphibole and occur in breccias with fairly high-grade greenschist facies (amphibole-chlorite-stilpnomelane) metabasalts. One unusual gabbro has experienced almost complete subsolidus recrystallization to an assemblage of aluminous magnesio-hornblende, anorthite, and green hercynitic spinel. This reaction, the extremely calcic Plagioclase, the occurrence of biotite and amphibole, and the association with greenschist facies metamorphic rocks suggest that crystallization of the gabbros occurred at elevated P(H2O). Comparisons with other calc-alkalic gabbro suites suggest pressures in excess of 4 kbar (about 12 km depth). The gabbros were exposed by the early stages of opening of the Mariana Trough and imply that considerable uplift may have attended rifting. They were also subjected to hydrothermal alteration after breccia formation, resulting in formation of chlorite, epidote, actinolite, and prehnite. Temperatures of at least 200°C - and probably 350°C - were reached, and most likely could not have been attained without extrusion or intrusion of magmas nearby, even though no such rocks were cored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and trace element (including REE) geochemistry of basalts and chilled basaltic glasses from the MAR axial zone in the vicinity of the Sierra Leone FZ (5-7°10'N) has been studied. Associations of basalts of various compositions with particular ocean-floor geological structural features have been analyzed as well. Three basaltic varieties have been discriminated. Almost ubiquitous are high-Mg basalts (Variety 1) that are derivatives of N-MORB tholeiitic melts and that are produced in the axial zone of spreading. Variety 2 is alkaline basalts widespread on the southwestern flank of the MAR crest zone in the Sierra Leone region, likely generated through deep mantle melting under plume impact. Variety 3 is basalts derivative from T- and P-MORB-like tholeiitic melts and originating through addition of deeper mantle material to depleted upper mantle melts. Magma generation parameters, as calculated from chilled glass compositions, are different for depleted tholeiites (44-55 km, 1320-1370°C) and enriched tholeiites (45-78 km, 1330-1450°C). Mantle plume impact is shown to affect not only tholeiitic basalt compositions but also magma generation conditions in the axial spreading zone, resulting in higher Ti and Na concentrations in melts parental to rift-related basalts occurring near the plume. T- and P-MORBs are also developed near areas where mantle plumes are localized. High-Mg basalts are shown to come in several types with distinctive Ti and Na contents. Nearly every single MAR segment (bounded by sinistral strike slips and the Bogdanov Fracture Zone) is featured by its own basalt type suggesting that it has formed above an asthenospheric diapir with its unique magma generation conditions. These conditions are time variable. Likely causes of temporal and spatial instability of the mantle upwelling beneath this portion of the MAR are singular tectonic processes and plume activity. In sulfide-bearing rift morphostructures (so-called "Ore area'' and the Markov Basin), basalts make up highly evolved suites generated through olivine and plagioclase fractionation, which is suggestive of relatively long-lived magma chambers beneath the sulfide-bearing rift morphostructures. Functioning of these chambers is a combined effect of singular geodynamic regime and plume activity. In these chambers melts undergo deep differentiation leading to progressively increasing concentration of sulfide phase, eventually to be supplied to the hydrothermal plumbing system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Miocene sediments from ODP Sites 652 and 654, drilled on the Sardinian margin in the Western Tyrrhenian Sea, are investigated through mineralogical, micromorphological, geochemical, and microgeochemical analyses. Clay associations appear to be little controlled by conditions of deposition, and largely depend on pre- and post-depositional conditions. The sedimentary series from Central Mediterranean gives very different geodynamic information, according to the sector considered. While relatively stable conditions, like those encountered in Caltanissetta Basin, Sicily, favor the mineralogical expression of warm-temperate and subarid Messinian climate, the Eastern Sardinia margin (Site 654) clay suites mainly reflect the transition from tectonically active to relaxed conditions. The series deposited at the foot of the same margin above a thinner crust (Site 652) experienced the effects of burial diagenesis, enhanced by strong geothermal gradient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Cretaceous sediments were sampled for magnetostratigraphy at three sites. ODP Site 765 and DSDP Site 261, in the Argo Abyssal Plain, consist primarily of brownish-red to gray claystone having hematite and magnetite carriers of characteristic magnetization. ODP Site 766, in the Gascoyne Abyssal Plain, consists mainly of dark greenish-gray volcaniclastic turbidites with magnetite as the carrier of characteristic magnetization. Progressive thermal demagnetization (Sites 765 and 261) or alternating field demagnetization (Site 766) yielded well-defined polarity zones and a set of reliable paleolatitudes. Magnetic polarity chrons were assigned to polarity zones using biostratigraphic correlations. Late Aptian chron M"-1"r, a brief reversed-polarity chron younger than MOr, is a narrow, 40-cm feature delimited in Hole 765C. Early Aptian reversed-polarity chron MOr is also present in Hole 765C. Polarity chrons Mir through M3r were observed in the Barremian of all three sites. Valanginian and Hauterivian polarity chrons can be tentatively assigned to polarity zones only in Hole 766A. The paleolatitude of this region remained at 35° to 37°S from the Berriasian through the Aptian. During this interval, there was approximately 16° of clockwise rotation, with the oriented sample suites of Site 765 displaying a Berriasian declination of 307° to an Aptian declination of 323°. These results are consistent with the interpolated Early Cretaceous apparent polar wander for Australia, but indicate that this region was approximately 5? farther north than predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinum-group elements (PGE), rhenium and osmium isotope data are reported for basalts from Deep Sea Drilling Project cores in the Philippine Sea Plate (PSP). Lithophile trace element and isotopic characteristics indicate a range of source components including DMM, EMII and subduction-enriched mantle. MORB-like basalts possess smooth, inclined chondrite-normalised PGE patterns with high palladium-PGE/iridium-PGE ratios, consistent with previously published data for MORB, and with the inferred compatibility of PGE. In contrast, while basalts with EMII-type lithophile element chemistry possess high Pt/Ir ratios, many have much lower Pd/Ir and unusually high Ru/Ir of >10. Similarly, back-arc samples from the Shikoku and Parece-Vela basins have very high Ru/Ir ratios (>30) and Pd/Ir as low as 1.1. Such extreme Pd/Ir and Ru/Ir ratios have not been previously reported in mafic volcanic suites and cannot be easily explained by variable degrees of melting, fractional crystallisation or by a shallow-level process such as alteration or degassing. The data appear most consistent with sampling of at least two mantle components with distinct PGE compositions. Peridotites with the required PGE characteristics (i.e. low Pd, but relatively high Ru and Re) have not been documented in oceanic mantle, but have been found in sub-continental mantle lithosphere and are the result of considerable melt depletion and selective metasomatic enrichment (mainly Re). The long-term presence of subduction zones surrounding the Philippine Sea Plate makes this a prime location for metasomatic enrichment of mantle, either through fluid enrichment or infiltration by small melt fractions. The Re-Os isotope data are difficult to interpret with confidence due to low Os concentrations in most samples and the uncertainty in sample age. Data for Site 444A (Shikoku Basin) give an age of 17.7+/-1.3 Ma (MSWD = 14), consistent with the proposed age of basement at the site and thus provides the first robust radiometric age for these samples. The initial 187Os/188Os of 0.1298+/-0.0069 is consistent with global MORB, and precludes significant metasomatic enrichment of Os by radiogenic slab fluids. Re-Os data for Sites 446A (two suites, Daito Basin) and 450 (Parece-Vela Basin) indicate ages of 73, 68 and 43 Ma, which are respectively, 30, 17 and >12 Ma older than previously proposed ages. The alkalic and tholeiitic suites from Site 446A define regression lines with different 187Os/188Osinitial (0.170+/-0.033 and 0.112+/-0.024, respectively) which could perhaps be explained by preferential sampling of interstitial, metasomatic sulphides (with higher time-integrated Re/Os ratios) by smaller percentage alkalic melts. One sample, with lithophile elements indistinguishable from MORB, is Os-rich (146 pg/g) and has an initial 187Os/188Os of 0.1594, which is at the upper limit of the accepted OIB range. Given the Os-rich nature of this sample and the lack of evidence for subduction or recycled crust inputs, this osmium isotope ratio likely reflects heterogeneity in the DMM. The dataset as a whole is a striking indication of the possible PGE and Os isotope variability within a region of mantle that has experienced a complex tectonic history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents electron microprobe data for dunite xenoliths from a lamprophyre dyke located on the island of Qeqertaa, West Greenland. The minimum age of this dyke is Palaeoproterozoic and it experienced amphibolite facies metamorphism and deformation during that era. The samples consist of nearly 200 xenoliths with a size range of 0.5-8 cm. These dunite xenoliths have olivine Mg#, that range from 80.3 to 94.6 (n = 579) with a mean of 92.6. Orthopyroxene is found in three xenoliths and garnet in five others. The latter suggests the depth of the Qeqertaa xenolith suite to be near the diamond stability-field, which is substantiated by the finding of diamonds in bulk samples of the Qeqertaa dyke. This further indicates the presence of a lithospheric mantle domain dominated by high-Mg# dunite to this depth in Palaeoproterozoic time. Cr-rich spinel, in the 0.1-0.2 mm size range, is found within and between olivine grains in individual xenoliths. These Cr-spinels yield Fe-Mg exchange temperatures of 400-600°C. However, the presence of intermediate spinel compositions spanning the lower temperature solvus suggests that equilibration temperatures were >550°C. Fe3+#, expressed as 100xFe3+/(Fe3++Al+Cr)), is shown to be a useful parameter in order to screen for altered spinel (Fe3+#>10) with disturbed Mg# and Cr#. The screened spinel data (Fe3+#<10) show a distinctly different trend in terms of spinel Cr# versus Mg#, compared to unmetamorphosed xenoliths in Tertiary lavas and dikes from Ubekendt Ejland and Wiedemann Fjord, respectively, also located within the North Atlantic craton. This difference likely reflects amphibolite facies metamorphic resetting of the Qeqertaa xenolith suite by Fe-Mg exchange. Given the similarity of the Qeqertaa xenolith suite with the Ubekendt and Wiedemann suites, in terms of their olivine Mg# and spinel Cr# distribution, high-Mg# dunite is likely to be an important component of the subcontinental lithospheric mantle beneath the North Atlantic craton and appears to have spanned a vertical distance of at least 150 km in this region, even during the Palaeoproterozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authigenic minerals contained in the altered basal intervals of volcaniclastic sediments from Sites 447 and 450 of Deep Sea Drilling Project Leg 59 are dioctahedral smectite (with variable crystallinity), phillipsite, and sanidine. Sanidine seems the most widespread and common product of basal alteration in the Philippine Sea marginal basins. The neomorphic mineral suites may have been produced by (1) halmyrolisis of the volcaniclastic sediments; (2) halmyrolisis of the underlying basalts; or (3) hydrothermalism associated with basaltic intrusions. At Site 450, other authigenic minerals occur (carbonates, analcime, clinoptilolite, Fe-Mn oxides), and the basal paragenesis is consistent with a hydro thermal origin. Such a process could have produced temperatures up to 200 °C in the tuffs lying as much as 2 meters above the contact with a basaltic intrusion. Products of low-temperature alteration, however, are also present in the altered interval of this site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2's, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ~2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ - 3 and FMQ - 1. This is consistent with fO2's of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2's as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2's in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively. Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ~FMQ - 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2's. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2's significantly greater than that of modern oceanic mantle. Instead, the fO2's inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Deep Sea Drilling Project Leg 73 (South Atlantic), basaltic pillow lava, flows, and sills were encountered in Holes 519A, 520, 522B, and 524. Paleomagnetic data indicate that the basalts from Holes 519A (magnetic Anomaly 51) and 522B (Anomaly 16) have ages of about 12 m.y. and about 38 m.y., respectively. The major- and trace- (including rare-earth-) element characteristics of the Hole 519A basalts (a total of 27 m) demonstrate that these basalts are typical normal-type mid-ocean-ridge basalts (N-type MORB). In composition the basalts overlap olivine tholeiites from other normal Mid-Atlantic Ridge segments. Both the spectra of incompatible, or less-hygromagmatophile elements (such as Ti, V, Y, and Zr) and REE abundances indicate that these basalts are the result of a low-pressure fractionation of olivine, spinel, and Plagioclase prior to eruption. In Hole 520 only 1.7 m of basalt were recovered from a total drilling depth of 10.5 m. These pillow basalts crystallized from fairly evolved (N-type MORB) tholeiitic melts. In total, 19 m of basaltic pillow lavas and flows were penetrated in Hole 522B. Thirteen cooling units were distinguished on the basis of glassy margins and fine quench textures. In contrast to Holes 519A and 520, the basalts of the Hole 522B ridge section can be divided into two major groups of tholeiites: (1) Cooling Units 1 through 12 and (2) Cooling Unit 13. The basalts in this ridge section are also N-type MORBs but are generally more differentiated than those of Holes 519A and 520. The lowermost basalts (Cooling Unit 13) have the most primitive composition and make up a compositional group distinct from the more evolved basalts in the twelve units above it. Hole 524 was drilled on the south flank of the Walvis Ridge and thus provided samples from a more complex part of the South Atlantic seafloor. Three different basaltic rock suites, interlayered with volcanic detrital sediments, were encountered. The rock suites are, from top to bottom, an alkali basaltic pillow lava; a 16-m-thick alkaline diabase sill with an age of about 65 m.y. (according to K-Ar dating and planktonic foraminifers); and a second sill that is approximately 9 m thick, about 74 m.y. in age, and tholeiitic in composition, thus contrasting strongly with the overlying alkaline rocks. The alkali basalts of Hole 524 show chemical characteristics that are very similar to the basaltic lavas of the Tristan da Cunha group volcanoes, which are located approximately 400 km east of the Mid-Atlantic Ridge crest. Thus, the Walvis Ridge may plausibly be interpreted as a line of hot-spot alkaline volcanoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the processes and histories of arc volcanism and of volcanism associated with backarc rifting. 130 samples containing igneous glass shards were taken from the Plioccne-Quatemai^ succession on the rift Hank (Site 788) and the Quaternary fill in the basin fill of the Sumisu Rift (Sites 790 and 791). These samples were subsequently analyzed at the University of Illinois at Chicago and Shizuoka University. The oxides determined by electron probe do not account for the total weight of the material; differences between summed oxides and 100% arise from the water contents, probably augmented by minor losses thai result from alkali vaporization during analysis. Weight losses in colorless glasses are up to 9%; those in brown glasses (dacitcs to basalts) arc no more than 4.5%; shards from the rift-flank (possibly caused by prolonged proximity to ihc scafloor) generally have higher values than those from the rift-basin fill How much of the lost water is magmatic, and how much is hydrated is uncertain; however, although the shards absorb potassium, calcium, and magnesium during hydration in the deep sea, they do so only to a minor extent that does not significantly alter their major element compositions. Therefore, the electron-probe results are useful in evaluating the magmatism recorded by the shards. Pre- and syn-rift Izu-Bonin volcanism were overwhelmingly dominated by rhyolile explosions, demonstrating that island arcs may experience significant silicic volcanism in addition to the extensive basaltic and basaltic andestic activity, documented in many arcs since the 1970s, that occurs in conjunction with the andesitic volcanism formerly thought to be dominant. Andesitic eruptions also occurred before rifting, but the andesitic component in our samples is minor. All the pre- and syn-rift rhyolites and andesites belong to the low-alkali island-arc tholeiitic suite, and contrast markedly with the alkali products of Holocene volcanism on the northernmost Mariana Arc that have been attributed to nascent rifting. The Quaternary dacites and andesites atop the rift flank and in the rift-basin fill are more potassic than those of Pliocene age, as a result of assimilation from the upper arc crust, or from variations in degrees of partial melting of the source magmas, or from metasomatic fluids. All the glass layers from the rift-flank samples belong to low-K arc-tholeiitic suites. Half of those in the Pliocene succession are exclusively rhyolitic: the others contain minor admixtures of dacite and andesite, or andesite and either basaltic andesite or basalt. In Contrast, the Quaternary (syn-rift) volcaniclastics atop the rift-flank lack basalt and basaltic andesite shards. These youngest sediments of the rift flank show close compositional affinities with five thick layers of coarse, rhyolitic pumice deposits in the basin fill, the two oldest more silicic than the younger ones. The coarse layers, and most thin ash layers that occur in hemipelagites below and intercalated between them, are low-K rhyolites and therefore probably came from sources in the arc. However, several thin rhyolitic ash beds in the hemipelagites are abnormally enriched in potassium and must have been provided by more distal sources, most likely to the west in Japan. Remarkably, the Pliocene-Pleistocene geochemistry of the volcanic front does not appear to have been influenced by the syn-rift basaltic volcanism only a few kilometers away. Rare, thin layers of basaltic ash near the bases of the rift-basin successions are not derived from the arc. They deviate strongly from trends that the arc-derived glasses display on oxide-oxide plots, and show close affinities to the basalts empted all over the Sumisu Rift during rifting. These basalts, and the basaltic ashes in the basal rift-basin fill, arc compositionally similar to those erupted from mature backarc basins elsewhere.