962 resultados para Sugarcane bagasse utilization
Resumo:
This study aimed to evaluate the tolerance of sugarcane cultivars to ratoon eradication under different glyphosate rates by means of physiological responses. Therefore, a trial was carried out in randomized complete blocks with 4 x 4 factorial design (cultivars x rates) totaling 16 treatments with four replicates. The cultivars IAC91-5155, IACSP93-3046, and IAC86-2480 and IAC87-3396 and the glyphosate rates 0 g ha-1; 1,920 g ha-1; 2,400 g ha-1; 2,880 g ha-1 were tested. The variables analyzed were percentage of tiller mortality, quantum efficiency of PSII (Fv/Fm) and SPAD index. The results showed that there are differences among sugarcane cultivars for tiller eradication and for physiological responses with glyphosate different rates. The rate of 2,880 g ha-1 was the most efficient in eliminating sugarcane tillers. The cultivars IAC86-2480, IAC87-3396 and IACSP93-3046 were the most sensitive and the IAC91-5155 tolerated, for a longer period of time, the damage to the photosynthetic apparatus of the ratoons caused by glyphosate desiccation. Due to different responses, different managements should be considered for eliminating ratoons of different cultivars.
Resumo:
An experiment was laid down in a screen house to determine the distribution of weed seeds at different soil depths and periods of cultivation of sugarcane in Ilorin, Nigeria. Soil samples from different depth levels (0-10 cm, 11-20 cm and 21-30 cm) were collected after harvesting of canes from three different land use fields (continuous sugarcane cultivation for > 20 years, continuous sugarcane cultivation for < 10 years after long fallow period and continuous sugarcane cultivation for < 5 years after long fallow period) in November, 2012. One kilogram of the sieved composite soil samples was arranged in the screen house and watered at alternate days. Germinating weed seedlings were identified, counted and then pulled out for the period of 8 months. Land use and soil depth had a highly significant (p £ 0.05) effect on the total number of weeds that emerged from the soil samples. The 010 cm of the soil depth had the highest weed seedlings that emerged. There was an equal weed seed distribution at the 11-20 cm and 21-30 cm depths of the soil. Sugarcane fields which have been continuously cultivated for a long period of time with highly disturbing soil tillage practices tend to have larger seed banks in deeper soil layers (11-20 cm and 21-30 cm) while recently opened fields had significantly larger seed banks at the 0-10 cm soil sampling depth.
Resumo:
Green sugarcane harvesting may promote great changes in the dynamics of herbicides in the environment. Our goal was to evaluate the influence of straw decomposition degree on leaching and weed (Ipomoea grandifolia) control efficacy by (14C) tebuthiuron and hexazinone. The presence of straw on the soil surface affected leaching, mainly for hexazinone (leaching reduced from 37 to 5% of the applied amount in the presence of straw). Overall, tebuthiuron showed more efficient control of Ipomoea than hexazinone. The straw decomposition degree affected only hexazinone efficacy that was lowest for the least decomposed straw. Further studies are needed to evaluate the effects of sugarcane straw on herbicides dissipation, particularly on volatilization and photolysis, to better predict their efficacy and environmental fate.
Resumo:
ABSTRACT This study aimed to understand the influence of sowing depth and the amount of sugarcane straw on the emergence of weed species Luffa aegyptiaca Miller (Cucurbitaceae); Mucuna aterrima Piper & Tracy (Fabaceae - Leguminosae) and Ricinus communis (Euphorbiaceae). A completely randomized design with a 5 x 4 x 3 factorial layout with four replications was used, at five sowing depths (0, 2, 4, 8 and 10 cm), four different amounts of sugarcane straw (0, 5, 10 and 15 t ha-1) and three different evaluation periods (7, 14 and 21 days after sowing). After sowing, different amounts of sugarcane straw (0, 5, 10 and 15 t ha-1) were deposited on soil. Seedling emergence was analyzed at 7, 14 and 21 days after sowing, counting the number of seedlings that had emerged. At the end of the trial, weed height (cm), leaf area (cm2) and shoot dry mass (g) were measured. In relation to emergence ability, studied species presented different responses according to sowing depth and to the amount of sugarcane straw deposited on the soil. For the L.aegyptiacaand M.aterrima, no significant difference was observed in the interaction between depth and sugarcane straw, showing the adaptation of these species to no-burn sugarcane system. For R.communis, seeds placed at 0 cm of sugar cane straw depth were observed to favor the emergence of seedlings.
Resumo:
ABSTRACT Growth regulators can be used to further retard or inhibit vegetative growth. In this sense, the objective of this study was to determine the effects of age and number of trinexapac-ethyl applications on the growth and yield of sugarcane. The experiment was in a randomized complete block design with four replications. The treatments were in a 3 x 2 + 2 factorial arrangement, where factor A corresponded to the application times of the plant growth regulator (120, 200 and 240 days after bud burst (DAB) of sugarcane) and factor B to the number of applications (one or two applications). In addition, two controls (one with three applications and another application without the regulator) were added. The application of trinexapac-ethyl decreased the number and the distance between buds, height, root volume and sugarcane yield. The sequential application (2 or 3 times) induced an increase in stem diameter and three applications of the product increased the number of plant tillers. The use of growth regulators applied at 240 DAB has reduced plant height, however without changing the number of buds. It can be concluded that trinexapac-ethyl changes sugarcane growth and yield, regardless of season and number of applications.
Resumo:
ABSTRACTThe raw sugarcane harvesting system has changed the dynamics of weed tillage for this crop, changing the predominant weed species and providing a barrier between the herbicide and the soil. Thus, this study has aimed to assess the influence of precipitation and sugarcane straw in the aminocyclopyrachlor and indaziflam herbicides control efficiency for the species Ipomoea trilobaand Euphorbia heterophylla. There were two trials, one for aminocyclopyrachlor and one for the indaziflam, both in the greenhouse at the campus of Faculdade Integrado in the Brazilian city of Campo Mourão, PR. Each experiment consisted of eight treatments with four replications. The treatments consisted of the combination of the presence of straw (10 t ha-1), capillary irrigation and rainfall simulation (20 mm). Assessments of control percentage of I.triloba and E.heterophylla were carried out, as well as the number of plants per pot. The aminocyclopyrachlor and indaziflam herbicides applied directly to the soil were efficient in controlling these species. The 20 mm rainfall simulation or daily irrigation on the straw are indispensable to promote the removal of aminocyclopyrachlor and indaziflam from the straw and provide satisfactory control of I.triloba and E.heterophylla.
Resumo:
The objective of this study was to evaluate the weed community in a raw sugarcane renovation area with three soil managements and peanut sowing in succession. The experiment was conducted during the 2007/08 season on a raw sugarcane area harvested without prior burning in the last five cuts. A randomized block design with treatments arranged in a split plot and arranged in four replications was used. The main treatments consisted of three cropping systems: conventional tillage, minimum tillage and direct planting, and subplots consisted in the absence (resting) or presence of crop rotation with peanuts. After 135 days from planting peanuts and 180 days of sugarcane harvest, the number of weeds m-2 was counted and the shoot dry biomass of the weeds collected was determined. The data were interpreted by analysis of variance and the means were compared by Tukey's test at 5% probability so that phytosociological indices a, b, c e d were calculated. The use of soil conservation tillage and peanut in rotation with sugarcane in the renovation areas is effective in controlling weeds and suppression of weed species difficult to control like Cyperus rotundus, Commelina bengalensis, Urochloa plantaginea, and Digitaria nuda.
Resumo:
Sulfentrazone leaching potential is dependent on soil properties such as strength and type of clay, organic matter content and pH, and may result in ineffectiveness of the product and contamination of groundwater. The objective of this study was to evaluate sulfentrazone leaching in five soils of the sugarcane region in the Northeast Region of Brazil, with different physical and chemical properties, by means of bioassay and high-performance liquid chromatography (HPLC) resolution. The experiment was conducted in a split plot in a completely randomized design. The plots had PVC columns with a 10 cm diameter and being 50 cm deep, filled with five different soil classes (quartzarenic neosol, haplic cambisol, yellowish-red latosol, yellowish-red acrisol, and haplic gleysol), and subplots for 10 depths in columns, 5 cm intervals. On top of the columns, sulfentrazone application was conducted and 12 hours later there was a simulated rainfall of 60 mm. After 72 hours, the columns were horizontally placed and longitudinally open, divided into sections of 5.0 cm. In the center of each section of the columns, soil samples were collected for chromatographic analyses and sorghum sowing was carried out as an indicator plant. The bioassay method was more sensitive to detect the presence of sulfentrazone in an assessment for chromatography soil, having provided greater herbicide mobility in quartzarenic neosol and yellowish-red latosol, whose presence was detected by the indicator plant to a depth of 45 and 35 cm, respectively. In the other soils, sulfentrazone was detected up to 20 cm deep. The intense mobility of sulfentrazone in quartzarenic neosol may result in herbicide efficiency loss in the soil because the symptoms of intoxication and the amount of herbicide detected via silica were highest between 15 cm and 35 cm depth regarding the soil surface layer (0-10 cm), indicating that sulfentrazone should be avoided in soils with such characteristics.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.
Resumo:
We studied the community and habitat occupation of epiphytes to understand how these plants cope with a supposedly stressful habitat: i) how general epiphytes occupy tree trunks, ii) how epiphytic bromeliads, occupy their supportive trees, iii) how CAM bromeliads are spatially distributed. The study was done in the dry forest of Jacarepiá, State of Rio de Janeiro. Data collection on epiphytes, phorophytes, and trees was based on the point-center quarter method. The photosynthetic pathway of the bromeliad species was determined using isotope ratio mass spectrometry. The presence of Gesneriaceae, Araceae, and Cactaceae indicates that some humidity is present in the area allowing the presence of supposedly less-specialized epiphytes. There was no correlation between epiphyte abundance and phorophyte diameter, and phorophytes had larger sizes than trees that do not host epiphytes. There was correlation between tree diameter and bromeliad abundance, and lack of correlation between diameter and bromeliad richness. Only one species was typical of the understorey and one was typical of the canopy, while intermediate heights were occupied by different species. The only C3 bromeliad species (Vriesea procera (Mart. ex Schult.f.) Wittm.) was significantly more exposed than the other species. If CAM occurrence is related to water economy, the fact that a C3 species is subjected to more exposed conditions is remarkable. Further comments are presented on the proportion between CAM bromeliad species and abundance in dry forest. Regarding life forms, holoepiphytes, as opposed to hemiepiphytes, showed not to be restricted by the phorophyte's diameter suggesting a more successful establishment of this life form.
Resumo:
We present an ultrastructural study of the utilization of human amniotic membrane in the treatment of congenital absence of the vagina in 10 patients. All patients were surgically treated with application of an amniotic membrane graft using the modified McIndoe and Bannister technique. Sixty days after surgery, samples of the vaginal neo-epithelium were collected for transmission electron microscopy analysis. The ultrastructural findings consisted of a lining of mature squamous epithelium indicating the occurrence of metaplasia of the amniotic epithelium into the vaginal epithelium. The cells were arranged in layers as in the normal vaginal epithelium, i.e., superficial, intermediate and deep layers. There were desmosomes and cytoplasmic intermediate cytokeratin filaments, as well as some remnant features of the previous amniotic epithelium. These findings suggest that human amniotic membrane is able to complete metaplasia into squamous cells but the mechanism of this cellular transformation is unknown
Resumo:
Two different pathogenetic mechanisms are proposed for colorectal cancers. One, the so-called "classic pathway", is the most common and depends on multiple additive mutational events (germline and/or somatic) in tumor suppressor genes and oncogenes, frequently involving chromosomal deletions in key genomic regions. Methodologically this pathway is recognizable by the phenomenon of loss of heterozygosity. On the other hand, the "mutator pathway" depends on early mutational loss of the mismatch repair system (germline and/or somatic) leading to accelerated accumulation of gene mutations in critical target genes and progression to malignancy. Methodologically this second pathway is recognizable by the phenomenon of microsatellite instability. The distinction between these pathways seems to be more than academic since there is evidence that the tumors emerging from the mutator pathway have a better prognosis. We report here a very simple methodology based on a set of tri-, tetra- and pentanucleotide repeat microsatellites allowing the simultaneous study of microsatellite instability and loss of heterozygosity which could allocate 70% of the colorectal tumors to the classic or the mutator pathway. The ease of execution of the methodology makes it suitable for routine clinical typing
Resumo:
Within the complex cellular arrangement found in the bone marrow stroma there exists a subset of nonhematopoietic cells referred to as mesenchymal progenitor cells (MPC). These cells can be expanded ex vivo and induced, either in vitro or in vivo, to terminally differentiate into at least seven types of cells: osteocytes, chondrocytes, adipocytes, tenocytes, myotubes, astrocytes and hematopoietic-supporting stroma. This broad multipotentiality, the feasibility to obtain MPC from bone marrow, cord and peripheral blood and their transplantability support the impact that the use of MPC will have in clinical settings. However, a number of fundamental questions about the cellular and molecular biology of MPC still need to be resolved before these cells can be used for safe and effective cell and gene therapies intended to replace, repair or enhance the physiological function of the mesenchymal and/or hematopoietic systems.
Resumo:
Trehalose biosynthesis and its hydrolysis have been extensively studied in yeast, but few reports have addressed the catabolism of exogenously supplied trehalose. Here we report the catabolism of exogenous trehalose by Candida utilis. In contrast to the biphasic growth in glucose, the growth of C. utilis in a mineral medium with trehalose as the sole carbon and energy source is aerobic and exhibits the Kluyver effect. Trehalose is transported into the cell by an inducible trehalose transporter (K M of 8 mM and V MAX of 1.8 µmol trehalose min-1 mg cell (dry weight)-1. The activity of the trehalose transporter is high in cells growing in media containing trehalose or maltose and very low or absent during the growth in glucose or glycerol. Similarly, total trehalase activity was increased from about 1.0 mU/mg protein in cells growing in glucose to 39.0 and 56.2 mU/mg protein in cells growing in maltose and trehalose, respectively. Acidic and neutral trehalase activities increased during the growth in trehalose, with neutral trehalase contributing to about 70% of the total activity. In addition to the increased activities of the trehalose transporter and trehalases, growth in trehalose promoted the increase in the activity of alpha-glucosidase and the maltose transporter. These results clearly indicate that maltose and trehalose promote the increase of the enzymatic activities necessary to their catabolism but are also able to stimulate each other's catabolism, as reported to occur in Escherichia coli. We show here for the first time that trehalose induces the catabolism of maltose in yeast.
Resumo:
This thesis studied the performance of Advanced metering infrastructure systems in a challenging Demand Response environment. The aim was to find out what kind of challenges and bottlenecks could be met when utilizing AMI-systems in challenging Demand Response tasks. To find out the challenges and bottlenecks, a multilayered demand response service concept was formed. The service consists of seven different market layers which consist of Nordic electricity market and the reserve markets of Fingrid. In the simulations the AMI-systems were benchmarked against these seven market layers. It was found out, that the current generation AMI-systems were capable of delivering Demand Response on the most challenging market layers, when observed from time critical viewpoint. Additionally, it was found out, that to enable wide scale Demand Response there are three major challenges to be acknowledged. The challenges hindering the utilization of wide scale Demand Response were related to poor standardization of the systems in use, possible problems in data connectivity solutions and the current electricity market regulation model.