926 resultados para Subcellular trafficking
Resumo:
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate chemical communication between neurons at synapses. A variant iGluR subfamily, the Ionotropic Receptors (IRs), was recently proposed to detect environmental volatile chemicals in olfactory cilia. Here, we elucidate how these peripheral chemosensors have evolved mechanistically from their iGluR ancestors. Using a Drosophila model, we demonstrate that IRs act in combinations of up to three subunits, comprising individual odor-specific receptors and one or two broadly expressed coreceptors. Heteromeric IR complex formation is necessary and sufficient for trafficking to cilia and mediating odor-evoked electrophysiological responses in vivo and in vitro. IRs display heterogeneous ion conduction specificities related to their variable pore sequences, and divergent ligand-binding domains function in odor recognition and cilia localization. Our results provide insights into the conserved and distinct architecture of these olfactory and synaptic ion channels and offer perspectives into the use of IRs as genetically encoded chemical sensors. VIDEO ABSTRACT:
Resumo:
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins constitute the core of an ancient vesicle fusion machine that diversified into distinct sets that now function in different trafficking steps in eukaryotic cells. Deciphering their precise mode of action has proved challenging. SM proteins are thought to act primarily through one type of SNARE protein, the syntaxins. Despite high structural similarity, however, contrasting binding modes have been found for different SM proteins and syntaxins. Whereas the secretory SM protein Munc18 binds to the ‟closed conformation" of syntaxin 1, the ER-Golgi SM protein Sly1 interacts only with the N-peptide of Sed5. Recent findings, however, indicate that SM proteins might interact simultaneously with both syntaxin regions. In search for a common mechanism, we now reinvestigated the Sly1/Sed5 interaction. We found that individual Sed5 adopts a tight closed conformation. Sly1 binds to both the closed conformation and the N-peptide of Sed5, suggesting that this is the original binding mode of SM proteins and syntaxins. In contrast to Munc18, however, Sly1 facilitates SNARE complex formation by loosening the closed conformation of Sed5.
Resumo:
1. The major side effects of the immunosuppressive drug cyclosporin A (CsA) are hypertension and nephrotoxicity. It is likely that both are caused by local vasoconstriction. 2. We have shown previously that 20 h treatment of rat vascular smooth muscle cells (VSMC) with therapeutically relevant CsA concentrations increased the cellular response to [Arg8]vasopressin (AVP) by increasing about 2 fold the number of vasopressin receptors. 3. Displacement experiments using a specific antagonist of the vasopressin V1A receptor (V1AR) showed that the vasopressin binding sites present in VSMC were exclusively receptors of the V1A subtype. 4. Receptor internalization studies revealed that CsA (10(-6) M) did not significantly alter AVP receptor trafficking. 5. V1AR mRNA was increased by CsA, as measured by quantitative polymerase chain reaction. Time-course studies indicated that the increase in mRNA preceded cell surface expression of the receptor, as measured by hormone binding. 6. A direct effect of CsA on the V1AR promoter was investigated using VSMC transfected with a V1AR promoter-luciferase reporter construct. Surprisingly, CsA did not increase, but rather slightly reduced V1AR promoter activity. This effect was independent of the cyclophilin-calcineurin pathway. 7. Measurement of V1AR mRNA decay in the presence of the transcription inhibitor actinomycin D revealed that CsA increased the half-life of V1AR mRNA about 2 fold. 8. In conclusion, CsA increased the response of VSMC to AVP by upregulating V1AR expression through stabilization of its mRNA. This could be a key mechanism in enhanced vascular responsiveness induced by CsA, causing both hypertension and, via renal vasoconstriction, reduced glomerular filtration.
Resumo:
Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shapes.
Resumo:
Exocytosis from synaptic vesicles is driven by stepwise formation of a tight alpha-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil "trigger site." This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1.SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.
Resumo:
During spermatogenesis, different genes are expressed in a strictly coordinated fashion providing an excellent model to study cell differentiation. Recent identification of testis specific genes and the development of green fluorescence protein (GFP) transgene technology and an in vivo system for studying the differentiation of transplanted male germ cells in infertile testis has opened new possibilities for studying the male germ cell differentiation at molecular level. We have employed these techniques in combination with transillumination based stage recognition (Parvinen and Vanha-Perttula, 1972) and squash preparation techniques (Parvinen and Hecht, 1981) to study the regulation of male germ cell differentiation. By using transgenic mice expressing enhanced-(E)GFP as a marker we have studied the expression and hormonal regulation of beta-actin and acrosin proteins in the developmentally different living male germ cells. Beta-actin was demonstrated in all male germ cells, whereas acrosin was expressed only in late meiotic and in postmeiotic cells. Follicle stimulating hormone stimulated b-actin-EGFP expression at stages I-VI and enhanced the formation of microtubules in spermatids and this way reduced the size of the acrosomic system. When EGFP expressing spermatogonial stem cells were transplanted into infertile mouse testis differentiation and the synchronized development of male germ cells could be observed during six months observation time. Each colony developed independently and maintained typical stage-dependent cell associations. Furthermore, if more than two colonies were fused, each of them was adjusted to one stage and synchronized. By studying living spermatids we were able to demonstrate novel functions for Golgi complex and chromatoid body in material sharing between neighbor spermatids. Immunosytochemical analyses revealed a transport of haploid cell specific proteins in spermatids (TRA54 and Shippo1) and through the intercellular bridges (TRA54). Cytoskeleton inhibitor (nocodazole) demonstrated the importance of microtubules in material sharing between spermatids and in preserving the integrity of the chromatoid body. Golgi complex inhibitor, brefeldin A, revealed the great importance of Golgi complex i) in acrosomic system formation ii) TRA54 translation and in iii) granule trafficking between spermatids.
Resumo:
DP1, a dimerization partner protein of the transcription factor E2F, is known to inhibit Wnt/β-catenin signalling along with E2F, although the function of DP1 itself was not well characterized. Here, we present a novel dual regulatory mechanism of Wnt/β-catenin signalling by DP1 independent from E2F. DP1 negatively regulates Wnt/β-catenin signalling by inhibiting Dvl-Axin interaction and by enhancing poly-ubiquitination of β-catenin. In contrast, DP1 positively modulates the signalling upon Wnt stimulation, via increasing cytosolic β-catenin and antagonizing the kinase activity of NLK. In Xenopus embryos, DP1 exerts both positive and negative roles in Wnt/β-catenin signalling during anteroposterior neural patterning. From subcellular localization analyses, we suggest that the dual roles of DP1 in Wnt/β-catenin signalling are endowed by differential nucleocytoplasmic localizations. We propose that these dual functions of DP1 can promote and stabilize biphasic Wnt-on and Wnt-off states in response to a gradual gradient of Wnt/β-catenin signalling to determine differential cell fates.
Resumo:
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which - apposition of the dorsal and ventral wing sheets during metamorphosis - is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Resumo:
BACKGROUND: RalA and RalB are multifuntional GTPases involved in a variety of cellular processes including proliferation, oncogenic transformation and membrane trafficking. Here we investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed the impact on different steps of the insulin-secretory process. METHODOLOGY/PRINCIPAL FINDINGS: We found that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-1E cells by RNA interference led to a decrease in secretagogue-induced insulin release. Real-time measurements by fluorescence resonance energy transfer revealed that RalA activation in response to secretagogues occurs within 3-5 min and reaches a plateau after 10-15 min. The activation of the GTPase is triggered by increases in intracellular Ca2+ and cAMP and is prevented by the L-type voltage-gated Ca2+ channel blocker Nifedipine and by the protein kinase A inhibitor H89. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane detected by Total Internal Reflection Fluorescence microscopy and with a strong impairment in Phospholipase D1 activation in response to secretagogues. RalA was found to be activated by RalGDS and to be severely hampered upon silencing of this GDP/GTP exchange factor. Accordingly, INS-1E cells lacking RalGDS displayed a reduction in hormone secretion induced by secretagogues and in the number of insulin-containing granules docked at the plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that RalA activation elicited by the exchange factor RalGDS in response to a rise in intracellular Ca2+ and cAMP controls hormone release from pancreatic beta-cell by coordinating the execution of different events in the secretory pathway.
Resumo:
Hyperammonemic disorders in pediatric patients lead to poorly understood irreversible effects on the developing brain that may be life-threatening. We showed previously that some of these NH4+-induced irreversible effects might be due to impairment of axonal growth that can be protected under ammonium exposure by creatine co-treatment. The aim of the present work was thus to analyse how the genes of arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), allowing creatine synthesis, as well as of the creatine transporter SLC6A8, allowing creatine uptake into cells, are regulated in rat brain cells under NH4+ exposure. Reaggregated brain cell three-dimensional cultures exposed to NH4Cl were used as an experimental model of hyperammonemia in the developing central nervous system (CNS). We show here that NH4+ exposure differentially alters AGAT, GAMT and SLC6A8 regulation, in terms of both gene expression and protein activity, in a cell type-specific manner. In particular, we demonstrate that NH4+ exposure decreases both creatine and its synthesis intermediate, guanidinoacetate, in brain cells, probably through the inhibition of AGAT enzymatic activity. Our work also suggests that oligodendrocytes are major actors in the brain in terms of creatine synthesis, trafficking and uptake, which might be affected by hyperammonemia. Finally, we show that NH4+ exposure induces SLC6A8 in astrocytes. This suggests that hyperammonemia increases blood-brain barrier permeability for creatine. This is normally limited due to the absence of SLC6A8 from the astrocyte feet lining microcapillary endothelial cells, and thus creatine supplementation may protect the developing CNS of hyperammonemic patients.
Resumo:
Abstract : Gene duplication is an essential source of material for the origin of genetic novelty and the evolution of lineage- or species-specific phenotypic traits. The reverse transcription of source gene mRNA followed by the genomic insertion of the resulting cDNA - retroposition - has provided the human genome with a significant number of gene copies during the last ~63 million years (MYA) of primate evolution. We estimated that at least 1 new functional gene (retrogene) per MYA emerged by retroposition in the primate lineage leading to humans. Using a combination of comparative sequencing and evolutionary simulations, we obtained strong evidence of functionality for 7 primate specific retrogenes. Most of these genes are specifically expressed in testis suggesting that retroposition has contributed with genetic raw material necessary for the evolution ofmale-specific functions in primates. We characterized CDC14Bretro (identified in the previous survey) that originated from the retroposition of a cell cycle gene - CDC14B - in the common ancestor of humans and apes. We demonstrate that CDC14Bretro experienced a period of intense positive selection in the African ape ancestor. By virtue of the amino acid substitutions that occurred during this period CDC 14Bretro adapted to a new subcellular compartment in African apes. Further analyses indicate that this subcellular shift reflects the evolution of anew functional role of CDC 14Bretro. Prompted by this result, we used yeast (Saccharomyces cerevisiae) to investigate on a global scale the extent of functional diversification of duplicate genes through the subcellular adaptation of their encoded proteins. We found that duplicate proteins frequently evolved new cellular localization patterns, either by partitioning of ancestral localizations ("sublocalization"), or more frequently by relocalization to previously unoccupied compartments ("neolocalization"). Interestingly, proteins involved in processes with a wider subcellular distribution more frequently evolved new localization patterns suggesting that subcellular localization changes are dependent on progenitor gene functions. Relocated proteins adapted to their new subcellular environments and evolved new functional roles through changes of their physio-chemical properties, expression levels, and interaction partners. Our work suggests an important role of subcellular adaptation for the emergence of new gene functions.
Resumo:
Oral administration of rabbit secretory IgA (sIgA) to adult BALB/c mice induced IgA+, IgM+, and IgG+ lymphoblasts in the Peyer's patches, whose fusion with myeloma cells resulted in hybridomas producing IgA, IgM, and IgG1 antibodies to the secretory component (SC). This suggests that SC could serve as a vector to target protective epitopes into mucosal lymphoid tissue and elicit an immune response. We tested this concept by inserting a Shigella flexneri invasin B epitope into SC, which, following reassociation with IgA, was delivered orally to mice. To identify potential insertion sites at the surface of SC, we constructed a molecular model of the first and second Ig-like domains of rabbit SC. A surface epitope recognized by an SC-specific antibody was mapped to the loop connecting the E and F beta strands of domain I. This 8-amino acid sequence was replaced by a 9-amino acid linear epitope from S. flexneri invasin B. We found that cellular trafficking of recombinant SC produced in mammalian CV-1 cells was drastically altered and resulted in a 50-fold lower rate of secretion. However, purification of chimeric SC could be achieved by Ni2+-chelate affinity chromatoraphy. Both wild-type and chimeric SC bound to dimeric IgA, but not to monomeric IgA. Reconstituted sIgA carrying the invasin B epitope within the SC moiety triggers the appearance of seric and salivary invasin B-specific antibodies. Thus, neo-antigenized sIgA can serve as a mucosal vaccine delivery system inducing systemic and mucosal immune responses.
Resumo:
Recent development cooperation with Guinea-Bissau, focussing on good governance, state-building and conflict prevention, did not contribute to democratization nor to the stabilization of volatile political, military and economic structures. Both the portrayal of Guinea-Bissau as failed ‘narco state' as well as Western aid meant to stabilize this state by multi-party elections are based on doubtful concepts and assumptions. Certainly, the impact of drug trafficking could endanger democratization and state-building if continued unchecked. However, the most pressing need is not state-building, facilitated by external aid, yet poorly rooted in the social and political fabric of the country, but nation-building from below as a pre-condition for the creation of viable state institutions.
Resumo:
Using the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts. Mutational analysis of the alpha1b-AR revealed that the binding site for ezrin involves a stretch of at least four arginines on the receptor C-tail. The results from both receptor biotinylation and immunofluorescence experiments indicated that the FERM domain impaired alpha1b-AR recycling to the plasma membrane without affecting receptor internalization. The dominant negative effect of the FERM domain, which relies on its ability to mask the ezrin binding site for actin, was mimicked by treatment of cells with cytochalasin D, an actin depolymerizing agent. A receptor mutant (DeltaR8) lacking its binding site in the C-tail for ezrin displayed delayed receptor recycling. These findings identify ezrin as a new protein directly interacting with a G protein-coupled receptor and demonstrate the direct implication of ezrin in GPCR trafficking via an actin-dependent mechanism.
Resumo:
Functional specialization is tightly linked to the ability of eukaryotic cells to acquire a particular shape. Cell morphogenesis, in turn, relies on the capacity to establish and maintain cell "polarity", which is achieved by orienting the trafficking of signaling molecules and organelles towards specific cellular locations and/or membrane domains. The "oriented" transport is based upon cytoskeletal polymers, microtubules and actin filaments, which serve as tracks for molecular motors. These latter generate motion that is translated either into pulling forces or directed transport. Fission yeast, a rod-like unicellular eukaryote, shapes itself by restricting growth at cell tips through the concerted activity of microtubules and actin cables. Microtubules, which assemble into 2-6 bundles and run parallel to the long axis of the cell, serve to orient growth to the tips. Growth is supported by the actin cytoskeleton, which provides tracks, the cables, for motor-based transport of secretory vesicles. The molecular motors, which bind cargos and deliver them to the tips along cables, are also known as type V myosins (hereafter indicated as myosin V). How the bundles of parallel actin filaments, i.e. the cables, extend from the tips through the cell and whether they serve any other purpose, besides providing tracks, is poorly understood. It is also unclear how the crosstalk between the two cytoskeletal systems is achieved. These are the basic questions I addressed during my PhD. The first part of the thesis work (Chapter two) suggests that the sole function of actin cables in polarized growth is to serve as tracks for motors. The data indicate that cells may have evolved two cytoskeletal systems to provide robustness to the polarization process but in principle a unique cytoskeleton might have been able to direct and support polarized growth. How actin cables are organized within the cell to optimize cargo transport is addressed later on (Chapter three). The major finding, based on the actin cable defect of cells lacking myosin Vs, is that actin filaments self-organize through the activity of the transport motors. In fact, by delivering cargos to cell tips and exerting physical pulling forces on actin filaments, Myosin Vs contribute not only to polarize cargo transport but also actin tracks. Among the cargos transported by Myosin V, which may be relevant to its function in organizing cables, there is likely the endoplasmic reticulum (ER). Actin cables, which run parallel to cortical ER, may serve as tracks for Myosin V. Myosin V-driven displacement, in turn, may account for the dynamic expansion and organization of ER during polarized growth as suggested in Chapter four. The last part of the work (Chapter five) highlights the existence of a crosstalk between actin and microtubules. In absence of myosin V, indeed, microtubules contribute to actin cable organization, likely playing a scaffolding/tethering function. Whether or not the kinesin 1, Klp3, plays any role in such process has to be demonstrated. In conclusion the work proposes a novel role for myosin Vs in actin organization, besides its transport function, and provides molecular tools to further dissect the role of this type of myosin in fission yeast. - La spécialisation fonctionnelle est étroitement connectée à la capacité des cellules eucaryotes d'acquérir une forme particulière. La morphogenèse cellulaire à son tour, est basée sur la capacité d'établir et de maintenir la polarité cellulaire, polarité réalisée en orientant le trafic des molécules signales et des organelles vers des zones cellulaires spécifiques. Ce transport directionnel dépend des polymères du cytosquelette, microtubules et microfilaments, qui servent comme des voies pour les moteurs moléculaires. Ces derniers engendrent du mouvement, traduit soit en force de traction soit en transport directionnel. La levure fissipare, un eucaryote unicellulaire en forme de bâtonnet, acquière sa forme en limitant sa croissance aux extrémités par l'action concertée des microtubules et de l'actine. Les microtubules, qui s'assemblent de façon antiparallèle et parcourent la cellule parallèlement à l'axe longitudinal, servent à orienter la croissance aux extrémités. Cette croissance est permise par le cytosquelette d'actine, fournissant des voies, les câbles, pour le transport actif des vésicules de sécrétion. Les moteurs moléculaires, responsables de ce transport actif sont aussi appelés myosines de type V (par la suite appelés myosines V). La manière dont ces câbles s'étendent depuis l'extrémité jusqu'à l'intérieur de la cellule est peu connue. De plus, on ignore également si ces câbles présentent une fonction autre que le transport. L'interaction entre les deux cytosquelettes est également obscure. Ce sont ces questions de base auxquelles j'ai tenté de répondre lors de ma thèse. La première partie de cette thèse (chapitre II) suggère que les câbles d'actine, pendant la croissance polarisée, fonctionnent uniquement comme des voies pour les moteurs moléculaires. Les données indiqueraient que les cellules ont fait évoluer deux systèmes de cytosquelette pour assurer plus de robustesse au processus de polarisation, bien que, comme nous le verrons, un système unique est suffisant. Au chapitre III, nous verrons comment les câbles d'actine sont organisés à l'intérieur de la cellule afin d'optimiser le transport des cargo. La découverte majeure, réalisée en observant des cellules dont la myosine V fait défaut, est que ces filaments d'actine s'auto organisent grâce au passage des moteurs moléculaires le long de ces voies. En réalité, en délivrant les cargos aux extrémités de la cellule et en exerçant des forces de traction sur les câbles, les myosines V contribuent non seulement à polariser le transport mais également à polariser les voies elles mêmes. Nous verrons également au chapitre IV, que parmi les cargos importants pour l'organisation des câbles, il y aurait le réticulum endoplasmique (RE). En effet, les câbles d'actine, qui s'étalent parallèlement au RE cortical, pourraient servir comme voie pour la myosine V. Cette dernière en retour pourrait être responsable de l'expansion dynamique et de l'organisation du RE pendant la croissance polarisée.