944 resultados para Structure-function
Resumo:
The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabdotids elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the beta A4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautrophicum at 2.0 Angstrom resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta -strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta -sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis. (C) 2001 Academic Press.
Resumo:
The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.
Resumo:
The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V, hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.
Resumo:
Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.
Resumo:
This paper considers a stochastic frontier production function which has additive, heteroscedastic error structure. The model allows for negative or positive marginal production risks of inputs, as originally proposed by Just and Pope (1978). The technical efficiencies of individual firms in the sample are a function of the levels of the input variables in the stochastic frontier, in addition to the technical inefficiency effects. These are two features of the model which are not exhibited by the commonly used stochastic frontiers with multiplicative error structures, An empirical application is presented using cross-sectional data on Ethiopian peasant farmers. The null hypothesis of no technical inefficiencies of production among these farmers is accepted. Further, the flexible risk models do not fit the data on peasant farmers as well as the traditional stochastic frontier model with multiplicative error structure.
Resumo:
Background: Versutoxin (delta-ACTX-Hv1) is the major component of the venom of the Australian Blue Mountains funnel web spider, Hadronyche versuta. delta-ACTX-Hv1 produces potentially fatal neurotoxic symptoms in primates by slowing the inactivation of voltage-gated sodium channels; delta-ACTX-Hv1 is therefore a useful tool for studying sodium channel function. We have determined the three-dimensional structure of delta ACTX-Hv1 as the first step towards understanding the molecular basis of its interaction with these channels. Results: The solution structure of delta-ACTX-Hv1, determined using NMR spectroscopy, comprises a core beta region containing a triple-stranded antiparallel beta sheet, a thumb-like extension protruding from the beta region and a C-terminal 3(10) helix that is appended to the beta domain by virtue of a disulphide bond. The beta region contains a cystine knot motif similar to that seen in other neurotoxic polypeptides. The structure shows homology with mu-agatoxin-l, a spider toxin that also modifies the inactivation kinetics of vertebrate voltage-gated sodium channels. More surprisingly, delta-ACTX-Hv1 shows both sequence and structural homology with gurmarin, a plant polypeptide. This similarity leads us to suggest that the sweet-taste suppression elicited by gurmarin may result from an interaction with one of the downstream ion channels involved in sweet-taste transduction. Conclusions: delta-ACTX-Hv1 shows no structural homology with either sea anemone or alpha-scorpion toxins, both of which also modify the inactivation kinetics of voltage-gated sodium channels by interacting with channel recognition site 3. However, we have shown that delta-ACTX-Hv1 contains charged residues that are topologically related to those implicated in the binding of sea anemone and alpha-scorpion toxins to mammalian voltage-gated sodium channels, suggesting similarities in their mode of interaction with these channels.
Resumo:
Gangliosides are known to be important in many biological processes. However, details concerning the exact function of these glycosphingolipids in cell physiology are poorly understood. in this study, the role of gangliosides present on the surface of rodent mast cells in maintaining cell structure was examined using RBL-2H3 mast cells and two mutant cell lines (E5 and D1) deficient in the gangliosides, GM(1) and the alpha-galactosyl derivatives of the ganglioside GD(1b). The two deficient cell lines were morphologically different from each other as well as from the parental RBL-2H3 cells. Actin filaments in RBL-2H3 and E5 cells were under the plasma membrane following the spindle shape of the cells, whereas in D1 cells, they were concentrated in large membrane ruffles. Microtubules in RBL-2H3 and E5 cells radiated from the centrosome and were organized into long, straight bundles. The bundles in D1 cells were thicker and organized circumferentially under the plasma membrane. The endoplasmic reticulum, the Golgi complex, and the secretory granule matrix were also altered in the mutant cell lines. These results suggest that the mast cell-specific alpha-galactosyl derivatives of ganglioside GD(1b) and GM(1) are important in maintaining normal cell morphology. (J Histochern Cytochem 58:83-93, 2010)
Resumo:
This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.
Resumo:
A two-domain portion of the proteinase inhibitor precursor from Nicotiana alata (NaProPI) has been expressed and its structure determined by NMR spectroscopy. NaProPI contains six almost identical 53 amino acid repeats that fold into six highly similar domains; however, the sequence repeats do nut coincide with the structural domains. Five of the structural domains comprise the C-terminal portion of one repeat and the N-terminal portion of the next. The sixth domain contains the C-terminal portion of the sixth repeat and the N-terminal portion of the first repeat. Disulphide bonds link these C and N-terminal fragments to generate the clasped-bracelet fold of NaProPI. The three-dimensional structure of NaProPI is not known, but it is conceivable that adjacent domains in NaProPI interact to generate the circular bracelet with the N and C termini in close enough proximity to facilitate formation of the disulphide bonds that form the clasp The expressed protein, examined in the current study, comprises residues 25-135 of NaProPI and encompasses the first two contiguous structural domains, namely the chymotrypsin inhibitor C1 and the trypsin inhibitor T1, joined by a five-residue linker, and is referred to as C1-T1. The tertiary structure of each domain in C1-T1 is identical to that found in the isolated inhibitors. However, no nuclear Overhauser effect contacts are observed between the two domains and the five-residue linker adopts an extended conformation. The absence of interactions between the domains indicates that adjacent domains do not specifically interact to drive the circularisation of NaProPI. These results are in agreement with recent data which describe similar PI precursors from other members of the Solanaceae having two, three, or four repeats. The lack of strong interdomain association is likely to be important for the function of individual inhibitors by ensuring that there is no masking of reactive sites upon release from the precursor. (C) 2001 Academic Press.
Resumo:
The tribe Hilarini (Diptera: Empididae), commonly known as dance flies, can be recognised by their swollen silk-producing prothoracic basitarsus, a male secondary sexual characteristic. The ultrastructure and function of the silk-producing basitarsus from one undescribed morphospecies of Hilarini, 'Hilarempis 20', is presented. Male H. 20 collect small parcels of diatomaceous algae from the surface of freshwater creeks that they bind with silk produced by the gland in the basitarsus. The gift is then presented to females in a nearby swarm, composed predominately of females. The basitarsus houses approximately 12 pairs of class III dermal glandular units that congregate on the ventral side of the cavity. Each gland cell has a large extracellular lumen where secretion accumulates. The lumen drains to the outside via a conducting canal encompassed by a canal cell and a duct extending through the shaft of a specialised secretory spine. The secretory spines lie in pairs in a ventral groove that runs the length of the basitarsus. A comparison of the basitarsal secretory spines with sensilla on the basitarsi of non gland-bearing legs of males, and with non gland-bearing prothoracic. basitarsi of females, suggests that the glandular units are derived from contact chemosensory sensilla. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.
Resumo:
Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.
Resumo:
This work presents a reflection on Design education and specifically on the role of Drawing in this area. As a subject, Design has expanded its field of action expanding into new areas such as Experience Design or Service Design. It became necessary for the designer to have more than an education based on technological knowledge or know-how. Many authors like Meredith Davis, Don Norman or Jamie Hobson point out the urgency to review the curricula of Design courses because nowadays “… design is more than appearance, design is about interaction, about strategy and about services. Designers change social behavior” (Norman 2011). When shifting from a product-centered design to a person-centered design (in a structure, a service or in a relationship) what should the function of drawing in a design course be? What should its curriculum be? Our work methodology will be to confront today’s perspectives on design theory and practice in an attempt to add to the discussion on the methodological strategies in design teaching in the contemporary context.
Resumo:
This work presents a reflection on Design education and specifically on the role of Drawing in this area. As a subject, Design has expanded its field of action expanding into new areas such as Experience Design or Service Design. It became necessary for the designer to have more than an education based on technological knowledge or know-how. Many authors like Meredith Davis, Don Norman or Jamie Hobson point out the urgency to review the curricula of Design courses because nowadays “ … design is more than appearance, design is about interaction, about strategy and about services. Designers change social behavior” (Norman, 2011) When shifting from a product-centered design to a person-centered design (in a structure, a service or in a relationship) what should the function of drawing in a design course be? What should its curriculum be? Our work methodology will be to confront today’s perspectives on design theory and practice in an attempt to add to the discussion on the methodological strategies in design teaching in the contemporary context.