861 resultados para Stress Intensity Factor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erhöhte Spiegel von oxidativem Stress bedingen Atherosklerose, eine Krankheit die über 50% aller Todesfälle in der westlichen Welt ausmacht. Es ist entscheidend Mechanismen zur Abwehr dieser Krankheit zu ergründen.rnDa genetische Polymorphismen des körpereigenen Enzyms Paraoxonase 2 (PON2) mit kardiovaskulären Erkrankungen assoziiert sind, wurden ihre Regulation und potentiell antioxidativen Funktionen in vaskulären Zellen analysiert. Mittels verschiedener molekularbiologischer Methoden konnte ich erstmals zeigen, dass PON2 in vaskulären Zellen vornehmlich subzellulär im ER lokalisiert ist. Anhand verschiedener Experimente wurde PON2 als potenter Faktor zur Reduktion von ROS identifiziert. Erhöhte ROS-Spiegel führen zur Aktivierung eines als unfolded protein response (UPR) bekannten ER-Stress-Signalwegs. Dieser ist neben Atherosklerose in eine Vielzahl von Erkrankungen involviert und hat kritischen Einfluss auf das Überleben oder Absterben von Zellen. Durchgeführte Promoter-Reporter Studien bewiesen die Induktion der Protein-Expression von PON2 nach Aktivierung des UPR-Signalwegs, was als kompensatorischer Mechanismus der Zelle zur Vermeidung UPR-induzierter Apoptose verstanden werden könnte. PON2 wehrt oxidativen Stress und die UPR-induzierte Apoptose ab und ist ein protektiver Faktor vor Atherosklerose.rnIn einem Krebsmodell könnte PON2 aber als antiapoptotischer Faktor entscheidend am Überleben von Tumorzellen beteiligt sein. Gerade diese beiden gegensätzlichen Aspekte der antiapoptotischen Funktion des Proteins zeigen die Notwendigkeit für weitere Untersuchungen zu PON2 auf.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-alpha concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemotherapy-induced neutropenia is a major risk factor for infection-related morbidity and mortality and also a significant dose-limiting toxicity in cancer treatment. Patients developing severe (grade 3/4) or febrile neutropenia (FN) during chemotherapy frequently receive dose reductions and/or delays to their chemotherapy. This may impact the success of treatment, particularly when treatment intent is either curative or to prolong survival. In Europe, prophylactic treatment with granulocyte-colony stimulating factors (G-CSFs), such as filgrastim (including approved biosimilars), lenograstim or pegfilgrastim is available to reduce the risk of chemotherapy-induced neutropenia. However, the use of G-CSF prophylactic treatment varies widely in clinical practice, both in the timing of therapy and in the patients to whom it is offered. The need for generally applicable, European-focused guidelines led to the formation of a European Guidelines Working Party by the European Organisation for Research and Treatment of Cancer (EORTC) and the publication in 2006 of guidelines for the use of G-CSF in adult cancer patients at risk of chemotherapy-induced FN. A new systematic literature review has been undertaken to ensure that recommendations are current and provide guidance on clinical practice in Europe. We recommend that patient-related adverse risk factors, such as elderly age (≥65 years) and neutrophil count be evaluated in the overall assessment of FN risk before administering each cycle of chemotherapy. It is important that after a previous episode of FN, patients receive prophylactic administration of G-CSF in subsequent cycles. We provide an expanded list of common chemotherapy regimens considered to have a high (≥20%) or intermediate (10-20%) risk of FN. Prophylactic G-CSF continues to be recommended in patients receiving a chemotherapy regimen with high risk of FN. When using a chemotherapy regimen associated with FN in 10-20% of patients, particular attention should be given to patient-related risk factors that may increase the overall risk of FN. In situations where dose-dense or dose-intense chemotherapy strategies have survival benefits, prophylactic G-CSF support is recommended. Similarly, if reductions in chemotherapy dose intensity or density are known to be associated with a poor prognosis, primary G-CSF prophylaxis may be used to maintain chemotherapy. Clinical evidence shows that filgrastim, lenograstim and pegfilgrastim have clinical efficacy and we recommend the use of any of these agents to prevent FN and FN-related complications where indicated. Filgrastim biosimilars are also approved for use in Europe. While other forms of G-CSF, including biosimilars, are administered by a course of daily injections, pegfilgrastim allows once-per-cycle administration. Choice of formulation remains a matter for individual clinical judgement. Evidence from multiple low level studies derived from audit data and clinical practice suggests that some patients receive suboptimal daily G-CSFs; the use of pegfilgrastim may avoid this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Diverse psychological factors are involved in the pathophysiology of stress. In order to devise effective intervention strategies, it is important to elucidate which factors play the most important role in the association between psychological stress and exacerbation of Crohn's disease (CD). We hypothesized that the association between perceived stress and exacerbation of CD would remain after removal of mood and anxiety components, which are largely involved in stress perception. METHODS: In all, 468 adults with CD were recruited and followed in different hospitals and private practices of Switzerland for 18 months. At inclusion, patients completed the Perceived Stress Questionnaire and anxiety and depression were assessed using the Hospital Anxiety and Depression Scale. During the follow-up, gastroenterologists assessed whether patients presented with a CD exacerbation. By means of binary logistic regression analysis, we estimated the factor by which one standard deviation of perceived stress would increase the odds of exacerbation of CD with and without controlling for anxiety and depression. RESULTS: The odds of exacerbation of CD increased by 1.85 times (95% confidence interval 1.43-2.40, P < 0.001) for 1 standard deviation of perceived stress. After removing the anxiety and depression components, the residuals of perceived stress were no longer associated with exacerbation of CD. CONCLUSIONS: The association between perceived stress and exacerbation of CD was fully attributable to the mood components, specifically anxiety and depression. Future interventional studies should evaluate the treatment of anxiety and depression as a strategy for potential prevention of CD exacerbations. (Inflamm Bowel Dis 2011;).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ADAMTS1 inhibits capillary sprouting, and since capillary sprouts do not experience the shear stress caused by blood flow, this study undertook to clarify the relationship between shear stress and ADAMTS1. It was found that endothelial cells exposed to shear stress displayed a strong upregulation of ADAMTS1, dependent upon both the magnitude and duration of their exposure. Investigation of the underlying pathways demonstrated involvement of phospholipase C, phosphoinositide 3-kinase, and nitric oxide. Forkhead box protein O1 was identified as a likely inhibitor of the system, as its knockdown was followed by a slight increase in ADAMTS1 expression. In silico prediction displayed a transcriptional binding site for Forkhead box protein O1 in the promotor region of the ADAMTS1 gene, as well as sites for nuclear factor 1, SP1, and AP-1. The anti-angiogenic effects of ADAMTS1 were attributed to its cleavage of thrombospondin 1 into a 70-kDa fragment, and a significant enhancement of this fragment was indeed demonstrated by immunoblotting shear stress-treated cells. Accordingly, scratch wound closure displayed a slowdown in conditioned medium from shear stress-treated endothelial cells, an effect that could be completely blocked by a knockdown of thrombospondin 1 and partially blocked by a knockdown of ADAMTS1. Non-perfused capillary sprouts in rat mesenteries stained negative for ADAMTS1, while vessels in the microcirculation that had already experienced blood flow yielded the opposite results. The shear stress-dependent expression of ADAMTS1 in vitro was therefore also demonstrated in vivo and thereby confirmed as a mechanism connecting blood flow with the regulation of angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives Posttraumatic stress disorder (PTSD) prospectively increases the risk of incident cardiovascular disease (CVD) independent of other risk factors in otherwise healthy individuals. Between 10% and 20% of patients develop PTSD related to the traumatic experience of myocardial infarction (MI). We investigated the hypothesis that PTSD symptoms caused by MI predict adverse cardiovascular outcome. Methods We studied 297 patients (61 ± 10 years, 83% men) who self-rated PTSD symptoms attributable to a previous index MI. Non-fatal CVD-related hospital readmissions (i.e. recurrent MI, elective and non-elective intracoronary stenting, bypass surgery, pacemaker implantation, cardiac arrhythmia, cerebrovascular event) were assessed at follow-up. Cox proportional hazard models controlled for demographic factors, coronary heart disease severity, major CVD risk factors, cardiac medication, and mental health treatment. Results Forty-three patients (14.5%) experienced an adverse event during a mean follow-up of 2.8 years (range 1.3–3.8). A 10 point higher level in the PTSD symptom score (mean 8.8 ± 9.0, range 0–47) revealed a hazard ratio (HR) of 1.42 (95% CI 1.07–1.88) for a CVD-related hospital readmission in the fully adjusted model. A similarly increased risk (HR 1.45, 95% CI 1.07–1.97) emerged for patients with a major or unscheduled CVD-related readmission (i.e. when excluding patients with elective stenting). Conclusions Elevated levels of PTSD symptoms caused by MI may adversely impact non-fatal cardiovascular outcome in post-MI patients independent of other important prognostic factors. The possible importance of PTSD symptoms as a novel prognostic psychosocial risk factor in post-MI patients warrants further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altered activity of retinal endothelin-1 (ET-1) and nitric oxide may play a causal role in the hemodynamic and histopathological changes of diabetic retinopathy. This study evaluated the therapeutic potential of long-term selective blockade of the ET-1(A) receptor (ETRA) to prevent the development of retinopathy in a genetic mouse model of nonobese type 1 diabetes (NOD). Mice with NOD that received subcutaneous implantation of insulin pellets and wild-type control mice were treated for 4 months with the selective ETRA antagonist LU208075 (30 mg/kg/day) via drinking water. At the end of the study, blood glucose levels were evaluated, and animals were anesthetized and perfused intracardially with FITC-labeled dextran. Retinas were removed and either fixed in formalin for confocal microscope evaluation of retinal vascular filling or transferred to RNALater for quantitative reverse transcriptase-polymerase chain reaction to evaluate expression of NOS-3, NOS-1, ET-1, ETRA, ETRB, and the angiogenic factor adrenomedullin. Compared with wild-type controls, expression of ET-1, ETRA, ETRB, and adrenomedullin in mice with NOD were markedly upregulated in the retinas of nontreated mice (cycle time values relative to GAPDH [deltaCt], 14.8 vs. 13.7, 18.57 vs. 17.5, 10.76 vs. 9.9, and 11.7 vs. 9.1, respectively). Mean integral fluorescence intensity (MIFI) of retinal vascular filling was reduced from normal values of 24 to 12.5 in nontreated animals. LU208075 treatment normalized the upregulated expression of ET-1 and adrenomedullin, as well as the deficit in MIFI, but did not affect the increased ETRA and ETRB expression or the elevated plasma glucose levels found in nontreated animals. NOS isoform expression was essentially unchanged. ETRA antagonists may provide a novel therapeutic strategy to slow or prevent progression of retinal microvascular damage and proliferation in patients for whom there is clear evidence of activation of the ET-1 system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.--The immunomodulating agent FTY720 is a substrate for the sphingosine kinase and the phosphorylated form is able to bind to sphingosine 1-phosphate (S1P) receptors. In this study, we show that exposure of renal mesangial cells to phospho-FTY720 leads to a rapid and transient activation of several protein kinase cascades, including the mitogen- and stress-activated protein kinases. The nonphosphorylated FTY720 also increased MAPK phosphorylation, but with a reduced potency and a more delayed time course. In addition, phospho-FTY720 and FTY720 are able to increase phosphorylation of Smad proteins which are classical members of the transforming growth factor-beta (TGF-beta) signalling device, thus suggesting a crosstalk between FTY720 and TGF-beta signalling. 2.--Pretreatment with the S1P(3) receptor antagonist suramin inhibits FTY720 and phospho-FTY720-induced Smad phosphorylation, whereas pertussis toxin pretreatment, which blocks G(i/0) proteins, has no effect on Smad phosphorylation. 3.--Since TGF-beta is a potent profibrotic cytokine in mesangial cells and upregulates the connective tissue growth factor (CTGF) and collagen as important hallmarks in the fibrotic sequelae, we investigated whether FTY720 and phospho-FTY720 are able to mimic these effects of TGF-beta. Indeed, FTY720 and phospho-FTY720 markedly upregulate CTGF and collagen type IV protein expressions. In addition, the tissue inhibitor of metalloproteinase-1 is transcriptionally activated by FTY720, whereas cytokine-induced matrix metalloproteinase-9 is down-regulated by FTY720. 4.--Depletion of the TGF-beta receptor type II by the siRNA transfection technique blocks not only Smad phosphorylation but also CTGF upregulation. Similarly, Smad-4 depletion by siRNA transfection also abrogates CTGF upregulation induced by FTY720 and phospho-FTY720. 5.--In summary, our data show that FTY720 and phospho-FTY720 not only activate the Smad signalling cascade in mesangial cells, but also upregulate the expression of CTGF and collagen. These findings suggest that FTY720 may have additional effects besides the established immunomodulatory action and, importantly, a profibrotic activity has to be considered in future experimental approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Posttraumatic stress disorder (PTSD) has been associated with an increased cardiovascular risk, though the pathophysiologic mechanisms involved are elusive. A hypercoagulable state before occurrence of coronary thrombosis contributes to atherosclerosis development. We investigated whether PTSD would be associated with increased coagulation activity. METHODS: We measured resting plasma levels of clotting factor VII activity (FVII:C), FVIII:C, FXII:C, fibrinogen, and D-dimer in 14 otherwise healthy patients with PTSD and in 14 age- and gender-matched, trauma-exposed non-PTSD controls. Categorical and dimensional diagnoses of PTSD were made using the Clinician-Administered PTSD Scale (CAPS) interview. We also investigated to what extent the relationship between PTSD and coagulation measures would be confounded by demographics, cardiovascular risk factors, lifestyle variables, time since trauma, and mood. RESULTS: Coagulation factor levels did not significantly differ between patients with a categorical diagnosis of PTSD and controls while controlling for covariates. In all subjects, FVIII:C was predicted by hyperarousal severity (beta = 0.46, p = .014) independent of covariates and by overall PTSD symptom severity (beta = 0.38, p = .045); the latter association was of borderline significance when separately controlling for gender, smoking, exercise, and anxiety (p values <.07). In patients, fibrinogen was predicted by hyperarousal severity (beta = 0.70, p = .005) and by overall PTSD symptom severity (beta = 0.61, p = .020), with mood partially affecting these associations. FVII:C, fibrinogen, and D-dimer showed no independent association with PTSD symptoms. CONCLUSIONS: PTSD may elicit hypercoagulability, even at subthreshold levels, offering one psychobiological pathway by which posttraumatic stress might contribute to atherosclerosis progression and clinical cardiovascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Post-traumatic stress disorder (PTSD) may develop in the aftermath of an acute myocardial infarction (MI). Whether PTSD is a risk factor for cardiovascular disease (CVD) is elusive. The biological mechanisms linking PTSD with atherosclerosis are unclear. DESIGN: A critical review of 31 studies in the English language pursuing three aims: (i) to estimate the prevalence of PTSD in post-MI patients; (ii) to investigate the association of PTSD with cardiovascular endpoints; and (iii) to search for low-grade systemic inflammatory changes in PTSD pertinent to atherosclerosis. METHODS: We located studies by PubMed electronic library search and through checking the bibliographies of these sources. RESULTS: The weighted prevalence of PTSD after MI was 14.7% (range 0-25%; a total of 13 studies and 827 post-MI patients). Two studies reported a prospective association between PTSD and an increased risk of cardiovascular readmission in post-MI patients and of cardiovascular mortality in combat veterans, respectively. In a total of 11 studies, patients with PTSD had increased rates of physician-rated and self-reported cardiovascular diseases. Various cytokines and C-reactive protein were investigated in a total of seven studies suggesting that PTSD confers a pro-inflammatory state. CONCLUSIONS: Increasing evidence suggests that PTSD specifically related to MI develops considerably frequently in post-MI patients. More research is needed in larger cohorts applying a population design to substantiate findings suggesting PTSD is an atherogenic risk factor and to understand better the suspected behavioural and biological mechanisms involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Systemic hypertension confers a hypercoagulable state. We hypothesized that resting mean blood pressure (MBP) interacts with stress hormones in predicting coagulation activity at rest and with acute mental stress. METHODS: We measured plasma clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, epinephrine and norepinephrine, and saliva cortisol in 42 otherwise healthy normotensive and hypertensive medication-free men (mean age 43 +/- 14 years) at rest, immediately after stress, and twice during 60 min of recovery from stress. RESULTS: At rest, the MBP-by-epinephrine interaction predicted FVII:C (beta = -0.33, P < 0.04) and D-dimer (beta = 0.26, P < 0.05), and the MBP-by-cortisol interaction predicted D-dimer (beta = 0.43, P = 0.001), all independent of age and body mass index (BMI). Resting norepinephrine predicted fibrinogen (beta = 0.42, P < 0.01) and D-dimer (beta = 0.37, P < 0.03), both independent of MBP. MBP predicted FVIII:C change from rest to immediately post-stress independent of epinephrine (beta = -0.37, P < 0.03) and norepinephrine (beta = -0.38, P < 0.02). Cortisol change predicted FVIII:C change (beta = -0.30, P < 0.05) independent of age, BMI and MBP. Integrated norepinephrine change from rest to recovery (area under the curve, AUC) predicted D-dimer AUC (beta = 0.34, P = 0.04) independent of MBP. The MBP-by-epinephrine AUC interaction predicted FVII:C AUC (beta = 0.28) and fibrinogen AUC (beta = -0.30), and the MBP-by-norepinephrine AUC interaction predicted FVIII:C AUC (beta = -0.28), all with borderline significance (Ps < 0.09) and independent of age and BMI. CONCLUSIONS: MBP significantly altered the association between stress hormones and coagulation activity at rest and, with borderline significance, across the entire stress and recovery interval. Independent of MBP, catecholamines were associated with procoagulant effects and cortisol reactivity dampened the acute procoagulant stress response.