815 resultados para Stock portfolio
Information systems requirements in support of the firm's portfolio of knowledge-driven capabilities
Resumo:
Using UK equity index data, this paper considers the impact of news on time varying measures of beta, the usual measure of undiversifiable risk. The empirical model implies that beta depends on news about the market and news about the sector. The asymmetric response of beta to news about the market is consistent across all sectors considered. Recent research is divided as to whether abnormalities in equity returns arise from changes in expected returns in an efficient market or over-reactions to new information. The evidence suggests that such abnormalities may be due to changes in expected returns caused by time-variation and asymmetry in beta.
Resumo:
If stock and stock index futures markets are functioning properly price movements in these markets should best be described by a first order vector error correction model with the error correction term being the price differential between the two markets (the basis). Recent evidence suggests that there are more dynamics present than should be in effectively functioning markets. Using self-exciting threshold autoregressive (SETAR) models, this study analyses whether such dynamics can be related to different regimes within which the basis can fluctuate in a predictable manner without triggering arbitrage. These findings reveal that the basis shows strong evidence of autoregressive behaviour when its value is between the two thresholds but that the extra dynamics disappear once the basis moves above the upper threshold and their persistence is reduced, although not eradicated, once the basis moves below the lower threshold. This suggests that once nonlinearity associated with transactions costs is accounted for, stock and stock index futures markets function more effectively than is suggested by linear models of the pricing relationship.
Resumo:
We consider the finite sample properties of model selection by information criteria in conditionally heteroscedastic models. Recent theoretical results show that certain popular criteria are consistent in that they will select the true model asymptotically with probability 1. To examine the empirical relevance of this property, Monte Carlo simulations are conducted for a set of non–nested data generating processes (DGPs) with the set of candidate models consisting of all types of model used as DGPs. In addition, not only is the best model considered but also those with similar values of the information criterion, called close competitors, thus forming a portfolio of eligible models. To supplement the simulations, the criteria are applied to a set of economic and financial series. In the simulations, the criteria are largely ineffective at identifying the correct model, either as best or a close competitor, the parsimonious GARCH(1, 1) model being preferred for most DGPs. In contrast, asymmetric models are generally selected to represent actual data. This leads to the conjecture that the properties of parameterizations of processes commonly used to model heteroscedastic data are more similar than may be imagined and that more attention needs to be paid to the behaviour of the standardized disturbances of such models, both in simulation exercises and in empirical modelling.
Resumo:
In a global business economy, firms have a broad range of corporate real estate needs. During the past decade, multiple strategies and tactics have emerged in the corporate real estate community for meeting those needs. We propose here a framework for analysing and prioritising the various types of risk inherent in corporate real estate decisions. From a business strategy perspective, corporate real estate must serve needs beyond the simple one of shelter for the workforce and production process. Certain uses are strategic in that they allow access to externalities, embody the business strategy, or provide entrée to new markets. Other uses may be tactical, in that they arise from business activities of relatively short duration or provide an opportunity to pre-empt competitors. Still other corporate real estate uses can be considered “core” to the existence of the business enterprise. These might be special use properties or may be generic buildings that have become embodiments of the organisation’s culture. We argue that a multi-dimensional matrix approach organised around three broad themes and nine sub-categories allow the decision-maker to organise and evaluate choices with an acceptable degree of rigor and thoroughness. The three broad themes are Use (divided into Core, Cyclical or Casual) – Asset Type (which can be Strategic, Specialty or Generic) and Market Environment (which ranges from Mature Domestic to Emerging Economy). Proper understanding of each of these groupings brings critical variables to the fore and allows for efficient resource allocation and enhanced risk management.
Resumo:
The transition to a low-carbon economy urgently demands better information on the drivers of energy consumption. UK government policy has prioritized energy efficiency in the built stock as a means of carbon reduction, but the sector is historically information poor, particularly the non-domestic building stock. This paper presents the results of a pilot study that investigated whether and how property and energy consumption data might be combined for non-domestic energy analysis. These data were combined in a ‘Non-Domestic Energy Efficiency Database’ to describe the location and physical attributes of each property and its energy consumption. The aim was to support the generation of a range of energy-efficiency statistics for the industrial, commercial and institutional sectors of the non-domestic building stock, and to provide robust evidence for national energy-efficiency and carbon-reduction policy development and monitoring. The work has brought together non-domestic energy data, property data and mapping in a ‘data framework’ for the first time. The results show what is possible when these data are integrated and the associated difficulties. A data framework offers the potential to inform energy-efficiency policy formation and to support its monitoring at a level of detail not previously possible.