923 resultados para Step-by-step
Resumo:
We found that Pd(II) ion (M) and the smallest 120 bidentate donor pyrimidine (L-a) self-assemble into a mononuclear M(L-a)(4) complex (1a) instead of the expected smallest M-12(L-a)(24) molecular ball (1), presumably due to the weak coordination nature of the pyrimidine. To construct such a pyrimidine bridged nanoball, we employed a new donor tris(4-(pyrimidin-5-yl)phenyl)amine (L); which upon selective complexation with Pd(II) ions resulted in the formation of a pregnant M24L24 molecular nanoball (2) consisting of a pyrimidine-bridged Pd-12 baby-ball supported by a Pd-12 larger mother-ball. The formation of the baby-ball was not successful without the support of the mother-ball. Thus, we created an example of a self-assembly where the inner baby-ball resembling to the predicted M-12(L-a)(24) ball (1) was incarcerated by the giant outer mother-ball by means of geometrical constraints. Facile conversion of the pregnant ball 2 to a smaller M-12(L-b)(24) ball 3 with dipyridyl donor was achieved in a single step.
Resumo:
An organic supramolecular ternary salt (gallic acid:isoniazid:water; GINZH) examined earlier for its proton conducting characteristics is observed to display step-like dielectric behavior across the structural phase transition mediated by loss of water of hydration at 389 K. The presence of hydration in the crystal lattice along with proton mobility between acid base pairs controls the ``ferroelectric like'' behavior until the phase transition temperature.
Resumo:
In the present study, we have made an effort to develop the novel synthetic antioxidants and antimicrobials with improved potency. The novel benzofuran-gathered C-2,4,6-substituted pyrimidine derivatives 5a, 5b, 5c, 5d, 5e, 5f, 6a, 6b, 6c, 6d, 6e, 6f, 7a, 7b, 7c, 7d, 7e, 7f, 8a, 8b, 8c, 8d, 8e, 8f, 9a, 9b, 9c, 9d, 9e, 9f were synthesized by simple and efficient four-step reaction pathway. Initially, o-alkyl derivative of salicylaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, upon the treatment with potassium tertiary butoxide in the presence of molecular sieves. Further, Claisen-Schmidt condensation with aromatic aldehydes via treatment with thiourea followed by coupling reaction with different sulfonyl chlorides afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, and elemental analysis and further screened for their antioxidant and antimicrobial activities. The results showed that the synthesized compounds 8b, 8e, 9b, and 9e produced significant antioxidant activity with 50% inhibitory concentration higher than that of reference, whereas compounds 7d and 7c produced dominant antimicrobial activity at concentrations 1.0 and 0.5mg/mL compared with standard Gentamicin and Nystatin, respectively.
Resumo:
Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (similar to 90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms - (1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are co-located. Regions in the space of parameters characterizing the base flow velocity profile, i.e. shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on prior observations of flow instability in other flows such as heated jets and bluff-body stabilized flames is discussed.
Resumo:
Hollow nanomaterials have attracted a lot of interest by virtue of their wide range of applications that arise primarily due to their unique architecture. A common strategy to synthesize hollow nanomaterials is by nucleation of the shell material over a preformed core and subsequent dissolution of the core in the second step. Herein an ultrafast, microwave route has been demonstrated, to synthesize PdO nanotubes in a single step using ZnO as a sacrificial template. The mechanism of the nanotube formation has been investigated in detail using control experiments. By tuning the starting ratio of PdCl2 : ZnO, hollow to hybrid PdO nanostructures could be obtained using the same method. Conversion of the PdO to Pd nanotubes has been shown by simple NaBH4 treatment. The thermal stability of the PdO nanotubes has been studied. The insights presented here are general and applicable for the synthesis of hybrids/hollow structures in other systems as well.
Resumo:
Thermal interface materials (TIMs) form a mechanical and thermal link between a heat source and a heat sink. Thus, they should have high thermal conductivity and high compliance to efficiently transfer heat and accommodate any differential strain between the heat source and the sink, respectively. This paper reports on the processing and the characterization of potential metallic TIM composite solders comprising of Cu, a high conductivity phase, uniformly embedded in In matrix, a highly compliant phase. We propose the fabrication of such a material by a two-step fabrication technique comprising of liquid phase sintering (LPS) followed by accumulative roll bonding (ARB). To demonstrate the efficacy of the employed two-step processing technique, an In-40 vol. % Cu composite solder was produced first using LPS with short sintering periods (30 or 60 s at 160 degrees C) followed by ARB up to five passes, each pass imposing a strain of 50%. Mechanical response and electrical and thermal conductivities of the fabricated samples were evaluated. It was observed that processing through ARB homogenizes the distribution of Cu in an In matrix, disintegrates the agglomerates of Cu powders, and also significantly increases thermal and electrical conductivities, almost attaining theoretically predicted values, without significantly increasing the flow stress. Furthermore, the processing technique also allows the insertion of desired foreign species, such as reduced graphene oxide, in In-Cu for further enhancing a target property, such as electrical conductivity.
Resumo:
The serotonin(1A) receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin(1A) receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3s, to analyze the effect of cholesterol on the structure and dynamics of the serotonin(1A) receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin(1A) receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.
Resumo:
A new in situ method was realized by one step laser cladding to produce Ni-base alloy composite coating reinforced by in situ reacted and gradiently distributed TiCp particles. The submicron TiCp particles were formed and uniformly distributed because of the in situ reaction and trapping effect under the rapid solidification condition. And, TiCp particles were of gradient distribution on a macro scale and their volume fraction increased from 1.86% at the layer/substrate interface to a maximum 38.4% at the surface of the layer. Furthermore, the in situ generated TiCp/gamma-Ni interfaces were free from deleterious surface reactions. Additionally, the clad coating also revealed a high microhardness of gradient variation with the layer depth and the superior abrasive wear resistance.
Resumo:
Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory and thrombotic processes. The rolling under hydrodynamic shear forces is a first step in directing leukocytes out of the blood stream into sites of inflammation and is mediated by the selectins, a family of extended, modular, and calcium-dependent lectin receptors. The interactions between P-, E-or L-selectins and their count.
Resumo:
An in situ method was developed to produce an Ni alloy composite coating reinforced by in situ reacted TiC particles with a gradient distribution, using one-step laser cladding with a pre-placed powder mixture on a 5CrMnMo steel substrate. Dispersed and ultra-fine TIC particles were formed in situ in the coating. Most. of the TiC particles, with a marked gradient distribution, were uniformly distributed within interdendritic regions because of the trapping effect of the advancing solid-liquid interface. In addition, the TiC-gamma-Ni interfaces generated in situ were found to be free from any deleterious surface reaction. Finally, the microhardness also showed a gradient variation, with the highest value of 1250 Hv0.2 and the wear properties of the coating were significantly enhanced.