978 resultados para Stanley, Owen
Resumo:
Given a probability distribution on an open book (a metric space obtained by gluing a disjoint union of copies of a half-space along their boundary hyperplanes), we define a precise concept of when the Fréchet mean (barycenter) is sticky. This nonclassical phenomenon is quantified by a law of large numbers (LLN) stating that the empirical mean eventually almost surely lies on the (codimension 1 and hence measure 0) spine that is the glued hyperplane, and a central limit theorem (CLT) stating that the limiting distribution is Gaussian and supported on the spine.We also state versions of the LLN and CLT for the cases where the mean is nonsticky (i.e., not lying on the spine) and partly sticky (i.e., is, on the spine but not sticky). © Institute of Mathematical Statistics, 2013.
Resumo:
Anesthesia providers in low-income countries may infrequently provide regional anesthesia techniques for obstetrics due to insufficient training and supplies, limited manpower, and a lack of perceived need. In 2007, Kybele, Inc. began a 5-year collaboration in Ghana to improve obstetric anesthesia services. A program was designed to teach spinal anesthesia for cesarean delivery and spinal labor analgesia at Ridge Regional Hospital, Accra, the second largest obstetric unit in Ghana. The use of spinal anesthesia for cesarean delivery increased significantly from 6% in 2006 to 89% in 2009. By 2012, >90% of cesarean deliveries were conducted with spinal anesthesia, despite a doubling of the number performed. A trial of spinal labor analgesia was assessed in a small cohort of parturients with minimal complications; however, protocol deviations were observed. Although subsequent efforts to provide spinal analgesia in the labor ward were hampered by anesthesia provider shortages, spinal anesthesia for cesarean delivery proved to be practical and sustainable.
Resumo:
English language song (both British and American) is influenced by a variety of cultures, races, and musical forms and has produced a broad range of song repertoire. Like songs in all countries and throughout history, these songs can be classified into three categories: imitative songs, experimental songs, and songs of individuality. Music experimentation, necessary and welcome as it is, can hardly command broad international attention. Thus, the songs of this dissertation performance project are chosen from the first and third categories: imitative songs and individual songs in the composer's own unique style. This project concentrates its exploration on twentieth-century solo songs written in English. Although twentieth-century British & American composers also produced solos and chamber music in other languages, this dissertation focuses upon their English repertoire. This performance project consists of three programs: one British repertoire and two American. The first program titled An Evening of British Song examines twentieth-century British song written by Roger Quilter, Peter Warlock, William Walton, Benjamin Britten, Thomas F. Dunhill, Ivor Gurney, and Frank Bridge. It was presented on December 12, 2001, in Homer Ulrich Recital Hall with the collaborative pianist Meriel Owen. The second program titled An Evening of American Song I comprises music written by Dominick Argento, Samuel Barber, Ned Rorem, Leonard Bernstein, and Lee Hoiby. It was presented on October 23, 2002, in Joseph & Alma Gildenhorn Recital Hall with the collaborative pianist R. Timothy McReynolds. The third program titled An Evening of American Song II written by John Duke, John Corigliano, Charles Ives, Richard Hundley, Lori Laitman, Frederick Loewe, George Gershwin, and Jerome Kern was presented on December 18, 2003, again in Joseph & Alma Gildenhorn Recital Hall with the collaborative pianist R. Timothy McReynolds and the flutist Jessica Dunnavant. Each of these three dissertation recitals occurred at the University of Maryland in College Park and was recorded. These CD recordings are held by the Michelle Smith Performing Arts Library at the University of Maryland.
Resumo:
The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance.
Resumo:
The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.
Resumo:
The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance. 1. Jin, T., and Yamada T., "Experimental Study of Human Behavior in Smoke Filled Corridors," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 511-519. 2. Galea, E.R., and Galparsoro, J.M.P., "EXODUS: An Evacuation Model for Mass Transport Vehicles," UK CAA Paper 93006 ISBN 086039 543X, CAA London, 1993. 3. Galea, E.R., and Galparsoro, J.M.P., "A Computer Based Simulation Model for the Prediction of Evacuation from Mass Transport Vehicles," Fire Safety Journal, Vol. 22, 1994, pp. 341-366. 4. Galea, E.R., Owen, M., and Lawrence, P., "Computer Modeling of Human Be havior in Aircraft Fire Accidents," to appear in the Proceedings of Combus tion Toxicology Symposium, CAMI, Oklahoma City, OK, 1995. 5. Kisko, T.M. and Francis, R.L., "EVACNET+: A Computer Program to Determine Optimal Building Evacuation Plans," Fire Safety Journal, Vol. 9, 1985, pp. 211-220. 6. Levin, B., "EXITT, A Simulation Model of Occupant Decisions and Actions in Residential Fires," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 561-570. 7. Fahy, R.F., "EXIT89: An Evacuation Model for High-Rise Buildings," Pro ceedings of The Third International Sym posium on Fire Safety Science, 1991, pp. 815-823. 8. Thompson, P.A., and Marchant, E.W., "A Computer Model for the Evacuation of Large Building Populations," Fire Safety Journal, Vol. 24, 1995, pp. 131-148. 9. Still, K., "New Computer System Can Predict Human Behavior Response to Building Fires," FIRE 84, 1993, pp. 40-41. 10. Ketchell, N., Cole, S.S., Webber, D.M., et.al., "The Egress Code for Human Move ment and Behavior in Emergency Evacu ations," Engineering for Crowd Safety (Smith, R.A., and Dickie, J.F., Eds.), Elsevier, 1993, pp. 361-370. 11. Takahashi, K., Tanaka, T. and Kose, S., "An Evacuation Model for Use in Fire Safety Design of Buildings," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 551- 560. 12. G2 Reference Manual, Version 3.0, Gensym Corporation, Cambridge, MA. 13. XVT Reference Manual, Version 3.0 XVT Software Inc., Boulder, CO. 14. Galea, E.R., "On the Field Modeling Approach to the Simulation of Enclosure Fires, Journal of Fire Protection Engineering, Vol. 1, No. 1, 1989, pp. 11-22. 15. Purser, D.A., "Toxicity Assessment of Combustion Products," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, pp. 1-200 - 1-245, 1988. 16. Hankin, B.D., and Wright, R.A., "Pas senger Flows in Subways," Operational Research Quarterly, Vol. 9, 1958, pp. 81-88. 17. HMSO, The Building Regulations 1991 - Approved Document B, section B 1 (1992 edition), HMSO publications, London, pp. 9-40. 18. Polus A., Schofer, J.L., and Ushpiz, A., "Pedestrian Flow and Level of Service," Journal of Transportation Engineering, Vol. 109, 1983, pp. 46-47. 19. Muir, H., Marrison, C., and Evans, A., "Aircraft Evacuations: the Effect of Passenger Motivation and Cabin Con figuration Adjacent to the Exit," CAA Paper 89019, ISBN 0 86039 406 9, 1989. 20. Muir, H., Private communication to appear as a CAA report, 1996.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria, cabin crew training and in post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. In this paper the capabilities and limitations of the airEXODUS evacuation model are described. Its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described. Finally, the data requiremnets of the airEXODUS evacuation model is discussed along with several projects currently underway at the the Univesity of Greenwich designed to obtain this data. Included in this discussion is a description of the AASK - Aircraft Accident Statistics and Knowledge - data base which contains detailed information from aircraft accident survivors.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in cabin crew training and post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation `Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
In this paper, the buildingEXODUS (V1.1) evacuation model is described and discussed and attempts at qualitative and quantitative model validation are presented. The data set used for the validation is the Tsukuba pavilion evacuation data. This data set is of particular interest as the evacuation was influenced by external conditions, namely inclement weather. As part of the validation exercise, the sensitivity of the buildingEXODUS predictions to a range of variables and conditions is examined, including; exit flow capacity, occupant response times and the impact of external conditions on the developing evacuation. The buildingEXODUS evacuation model was found to be able to produce good qualitative and quantitative agreement with the experimental data.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing large-scale evacuation experiments for the next generation ultra high capacity aircraft (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place. Also described is a newly defined performance parameter known as OPS that can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.
Resumo:
In this paper, the buildingEXODUS (V1.1) evacuation model is described and discussed and attempts at qualitative and quantitative model validation are presented. The data sets used for validation are the Stapelfeldt and Milburn House evacuation data. As part of the validation exercise, the sensitivity of the buildingEXODUS predictions to a range of variables is examined, including: occupant drive, occupant location, exit flow capacity, exit size, occupant response times and geometry definition. An important consideration that has been highlighted by this work is that any validation exercise must be scrutinised to identify both the results generated and the considerations and assumptions on which they are based. During the course of the validation exercise, both data sets were found to be less than ideal for the purpose of validating complex evacuation models. However, the buildingEXODUS evacuation model was found to be able to produce reasonable qualitative and quantitative agreement with the experimental data.
Resumo:
In this article, the buildingEXODUS (V1.1) evacuation model is described and discussed and attempts at qualitative and quantitative model validation are presented. The data set used for the validation is the Tsukuba pavilion evacuation data. This data set is of particular interest as the evacuation was influenced by external conditions, namely inclement weather. As part of the validation exercise, the sensitivity of the buildingEXODUS predictions to a range of variables and conditions is examined, including: exit flow capacity, occupant response times, and the impact of external conditions on the developing evacuation. The buildingEXODUS evacuation model was found to produce good qualitative and quantitative agreement with the experimental data.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However such models have a heavy dependency on real evacuation data in order to (a) identify the key processes and factors associated with evacuation, (b) quantify variables and parameters associated with the identified factors/processes and finally (c) validate the models. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise from three major data sources in order to address these issues. This paper describes the extraction and application of data from one of these sources - aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (aircraft accident statistics and knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK comprises four component sub-databases. These consist of the ACCIDENT (crash details), FLIGHT ATTENDANT (observations and actions of the flight attendants), FATALS (details concerning passenger fatalities) and PAX (observations and accounts from individual passengers) databases. AASK currently contains information from 25 survivable aviation accidents covering the period 4 April 1977 to 6 August 1995, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. In addition to aiding the development of aircraft evacuation models, AASK is also being used to challenge some of the myths which proliferate in the aviation safety industry such as, passenger exit selection during evacuation, nature and frequency of seat jumping, speed of passenger response and group dynamics. AASK can also be used to aid in the development of a more comprehensive approach to conducting post accident interviews, and will eventually be used to store the data directly.
Resumo:
This article examines occupant behavior exhibited during evacuation conditions. This is based on a review of a wide range of published literature concerned with evacuation. Factors influencing evacuation performance can be categorized into four broad areas, namely, configurational, environmental, procedural, and, most importantly, behavioral. The contributory factors associated with each of the four influencing categories are examined in detail and it is suggested that these factors should be represented within evacuation models.