960 resultados para Specific leaf area


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho foi conduzido com o objetivo de avaliar as características de crescimento e produção de quatro cultivares de gérbera de vaso fertirrigadas com duas soluções nutritivas. O experimento foi realizado em casa-de-vegetação, durante o período de maio a julho de 2006, na UNESP-FCA em Botucatu-SP. O delineamento experimental foi de blocos casualizados e constituído em esquema fatorial 4x2, sendo 4 cultivares de gérbera (Cherry, Golden Yellow, Salmon Rose e Orange) e 2 soluções nutritivas. As plantas foram conduzidas em vasos com volume de 1,3 L, preenchidos com substrato composto de 70% de casca de pinus fina e 30% de terra de subsolo. Avaliou-se o número de folhas e diâmetro de planta semanalmente durante o ciclo da cultura; área foliar e fitomassa seca ao final dos períodos vegetativo e reprodutivo; tempo necessário para a produção, número de inflorescências, diâmetro das inflorescências e hastes e altura de planta, no ponto de comercialização. As cultivares responderam de maneira diferenciada quanto às características de crescimento, Salmon Rose e Cherry apresentaram maior formação de parte aérea; Golden Yellow e Orange foram mais compactas. No ponto de comercialização, somente altura, diâmetro de inflorescência e haste apresentaram variação entre as cultivares. As duas soluções nutritivas foram eficientes para a produção de plantas de qualidade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foram realizados dois ensaios, sendo um em solução nutritiva e outro em solo, utilizando seis níveis de nitrogênio (28, 56, 84, 112, 140 e 168 mg/L de N) a fim de ajustar as leituras diretas, feitas nas folhas de feijoeiro, com um clorofilômetro (Minolta SPAD-501), aos níveis crescentes de nitrogênio e ao seu teor nas folhas. Avaliaram-se os parâmetros: área foliar; massas dos materiais verde e seco; teor de clorofila; produção de grãos e teores de N, Ca, Mg e S. Todos esses dados, mais as leituras do aparelho, foram correlacionados entre si e com os níveis de N aplicados. As correlações positivas entre as leituras e os níveis de N fornecidos (R = 0,86) e entre as leituras e os teores de N nas folhas (R = 0,75) indicam que há perspectivas favoráveis quanto ao uso desse equipamento para detectar deficiências de nitrogênio em feijoeiro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Na floricultura, a competição por mercados é intensa e o diferencial de produtividade consiste no manejo nutricional adequado, por promover grande impacto sobre a qualidade, a produtividade e a longevidade das inflorescências e da planta. O presente trabalho teve o objetivo de avaliar os efeitos de níveis de condutividade elétrica (CE) no desenvolvimento de plantas de crisântemo (Dendranthema grandiflora Tzvelev.) em vaso sob cultivo protegido. O experimento foi conduzido no município de Paranapanema - SP. Usou-se o delineamento experimental de blocos casualizados com quatro repetições e parcelas divididas. As parcelas foram constituídas pelas épocas de amostragem, e as subparcelas, pelos diferentes níveis de CE, determinados na solução aplicada via água de irrigação: 1,42; 1,65; 1,89; 2,13 e 2,36 dS m-1 (fase vegetativa); 1,71; 1,97; 2,28; 2,57 e 2,85 dS m-1 (fase de botão). Determinaram-se, semanalmente, a altura da planta e o diâmetro do buquê, e a cada 14 dias, a área foliar e a fitomassa seca da parte aérea da planta. O tratamento, correspondente à aplicação de solução com CE de 2,13 dS m-1 na fase vegetativa e 2,57 dS m-1 na fase de botão, proporcionou melhor aspecto visual das plantas, além de apresentar maior valor de fitomassa seca da parte aérea, maior área foliar e melhores formação e coloração.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LiCoO2 powders were prepared by combustion synthesis, using metallic nitrates as the oxidant and metal sources and urea as fuel. A small amount of the LiCoO2 phase was obtained directly from the combustion reaction, however, a heat treatment was necessary for the phase crystallization. The heat treatment was performed at the temperature range from 400 up to 700 degreesC for 12 h. The powders were characterized by X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and specific surface area values were obtained by BET isotherms. Composite electrodes were prepared using a mixture of LiCoO2, carbon black and poly(vinylidene fluoride) (PVDF) in the 85:10:5% w/w ratio. The electrochemical behavior of these composites was evaluated in ethylene carbonate/dimethylcarbonate solution, using lithium perchlorate as supporting electrolyte. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V and one irreversible redox process at 3.3 V for the LiCoO2 obtained after a post-heat treatment at 400 and 500 degreesC.Raman spectroscopy showed the possible presence of LiCoO2 with cubic structure for the material obtained at 400 and 500 degreesC. This result is in agreement with X-ray data with structural refinement for the LiCoO2 powders obtained at different temperatures using the Rietveld method. Data from this method showed the coexistence of cubic LiCoO2 (spinel) and rhombohedral (layered) structures when LiCoO2 was obtained at lower temperatures (400 and 500 degreesC). The single rhombohedral structure for LiCoO2 was obtained after post-heat treatment at 600 degreesC. The maximum energy capacity in the first discharge was 136 mA g(-1) for the composite electrode based on LiCoO2 obtained after heat treatment at 700 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of nitrogen availability on growth and photosynthesis were followed in plants of sunflower (Helianthus annuus L., var. CATISSOL-01) grown in the greenhouse under natural photoperiod. The sunflower plants were grown in vermiculite under two contrasting nitrogen supply, with nitrogen supplied as ammonium nitrate. Higher nitrogen concentration resulted in higher shoot dry matter production per plant and the effect was apparent from 29 days after sowing (DAS). The difference in dry matter production was mainly attributed to the effect of nitrogen on leaf production and on individual leaf dry matter. The specific leaf weight (SLW) was not affected by the nitrogen supply. The photosynthetic CO2 assimilation (A) of the target leaves was remarkably improved by high nitrogen nutrition. However, irrespective of nitrogen supply, the decline in photosynthetic CO2 assimilation occurred before the end of leaf growth. Although nitrogen did not change significantly stomatal conductance (gs), high-N grown plants had lower intercellular CO2 concentration (C-i) when compared with low-N grown plants. Transpiration rate (E) was increased in high-N grown plants only at the beginning of leaf growth. However, this not resulted in lower intrinsic water use efficiency (WUE). (C) 2004 Elsevier B.V.. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of sediment in water bodies presents great environmental importance, because of its ability to adsorb the pollutants, they may facilitate the understanding of the history of the current quality of the water system. Depending on how it is done the collection, analysis can show both a recent contamination as old. The detailed characterization of the sediment may reveal details that can understand how each type of pollutant interacts with the material given its composition. In this work it has developed a systematic methodology to characterize samples of sediment, with the aim to understand how a series of metal is distributed in different size fractions of the sediment. This study was conducted in five samples of sediment (P1, P2, P3a, P3B and P3c) collected in Jundiaí river, one of the most important tributaries of the river Potengi in the region of Macaíba, RN. The characterization was made with the samples previously sieved into meshes with different granulometries (+8#, -8+16#, -16+65# - 65+100#,-100+200#,-200+250# and -250#), using the following techniques: Analysis of specific surface area by BET method, determining the levels of organic matter (OM%) and humidity through the gravimetry and Analysis Thermogravimetric (TG), Infrared Spectroscopy in a Fourier transform (FTIR ), Analysis of X ray diffraction (XRD), analysis of heavy metals by optical emission spectrometry with the Argon Plasma (ICP-OES). The analyzed elements were Al, Cd, Cr, Cu, Fe, Mn, Ni, Zn and P. In addition to the techniques of characterization above, was also made the rebuilding of the samples P1, P2 and P3B in relation to the levels of organic matter and concentration of heavy metals. Then, the results of the recomposed samples were compared with those obtained in crude samples, showing great consistency. The gravimetry, used in determining the levels of organic matter, was not considered an appropriate method because the clay minerals present in the sediment samples analyzed fall apart in the same range of temperature (550-600 0C) used in roasting (600 0C). The results also showed the trend of organic matter and heavy metals to focus on the thin fractions, although the largest concentrations of metals are in intermediate fractions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mesoporous molecular sieves of MCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work, mesoporous molecular sieves MCM-41 were modified with different rare earth ions (La, Eu e Yb) for the obtaining nanostrutured materials with catalytic properties. The catalysts were synthesized by the hydrothermal method at 100oC for 120 h, presenting, all the samples, in the gel of synthesis molar ratio Si/Ln = 50. The obtained materials after calcination at 500oC for 2 h were characterized by XRD, surface area BET, TG/DTG, FTIR, and hydrothermal stability at 700ºC. The XRD analysis of the catalysts indicated that the materials containing rare earth presented characteristic hexagonal structure of the mesoporous materials of the type MCM-41. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures lower than 500oC. The samples presented variations as the specific superficial area, average diameter of pores and thickness of the silica wall, as a function of the nature of the rare earth impregnated in the mesoporous material. Hydrotermal stability was evaluated through the exposition of the materials to water vapour at 700°C. The thiophene adsorptions reach a maximum at 80% of conversion and incorporation of the rare earths showed influence in the process. Adsorption capacity followed the sequence: Yb-MCM-41 < La-MCM-41 < Eu-MCM-41 < MCM-41

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis of MFI-type zeolite membranes was carried by the process in situ or hydrothermal crystallization. We studied the homogenization time of the room temperature and gel filtration just before the crystallization step performed out in an oven, thus obtaining a more uniform zeolite film. The powder synthesized zeolite (structure type MFI, Silicalite) was characterized by several complementary techniques such as Xray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis, temperature programmed desorption (TPD), Fourier Transform infrared spectroscopy (FTIR) and textural analysis by nitrogen adsorption (specific surface area). For the purpose of evaluating the quality of the layer supported on the ceramic support, N2 permeation tests were carried starting from room temperature to 600 °C, where values were observed values more appropriate permeation from 200 °C. With the data obtained, it was made into a graph of temperature versus permeation function, the curve of surface diffusion was found. For scanning electron microscopy, we observed the formation of homogeneous crystals and the zeolite film showed no fissures or cracks, indicating that the process of synthesis and subsequent treatments not damaged the zeolite layer on the support. Carried permeation studies were found values ranging from 3.64x10-6 to 3.78x10-6, 4.71x10-6 to 5.02x10-6, to pressures 20 and 25 psi, respectively. And the mixture xylenes/N2 values were between 5.39x10-6 to 5.67x10-6 and 8.13x10-6 to 8.36x10-6, also for pressures of 20 and 25 psi. The values found for the separation factor were 15.22 at 400 °C in the first experiment and 1.64 for the second experiment at a temperature of 150 °C. It is concluded that the Silicalite membrane was successfully synthesized and that it is effective in the separation of binary mixtures of xylenes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the main applications of methane is in the production of syngas, a mixture of hydrogen and carbon monoxide. Procedures used in this process are steam reforming, CO2 reforming, partial oxidation and autothermal reforming. The present study evaluated and compared the behavior of nickel catalysts supported on mixed oxides of cerium and manganese in the partial oxidation of methane with that of nickel catalysts supported on mixed oxides of cerium and zirconium. Mixed oxides of cerium and zirconium or cerium and manganese were synthesized using two different preparation methods, the polymeric precursor based on Pechini method and combustion reaction using a microwave. This was followed by impregnation with nickel content of 15 %. Samples were calcined at 300, 800 and 900 °C and characterized by specific surface area (SSA), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR) and the reaction of partial oxidation of methane. The specific areas of samples decrease with the rise in calcination temperature and after nickel impregnation. Metal-cerium solid solution was formed and the presence of other manganese species outside the solid solution structure was confirmed in the compound with the highest amounts of manganese oxides showed. With regard to scanning electron microscopy, supports based on cerium and zirconium prepared by Pechini method exhibited agglomerated particles without uniform geometry or visible pores on the surface. However, compounds containing manganese presented empty spaces in its structure. Through synthesis by combustion reaction, morphology acquired independently of the proposed composition demonstrated greater porosity in relation to Pechini synthesis. Although catalysts were prepared using different synthesis methods, the insertion of nickel showed very similar reduction profiles (TPR). In relation to nickel catalysts supported on mixed oxide of cerium and zirconium, there is an initial reduction of NiO species that present certain interaction with the support. This is followed by the reduction of Ce4+ in Ce3+ surface, with subsequent bulk reduction. For catalysts containing manganese, a reduction of nickel oxide species occurs, followed by two stages of reduction for species Mn2O3 in Mn3O4 and Mn3O4 in MnO, with subsequent reduction of bulk. With respect to partial oxidation reactions, the nickel catalyst supported on mixed oxide of cerium and zirconium, prepared using the Pechini method, exhibited CH4 conversion of approximately 80 %, with conversion of 81 % when prepared by combustion. This behavior continued for 10 hours of reaction. Manganese content was also found to directly influence catalytic activity of materials; the greater the manganese oxide content, the faster deactivation and destabilization occurred in the catalyst. In both synthesis methods, the nickel catalyst supported on mixed oxide of cerium and zirconium maintained an H2/CO ratio very close to 2 during the 10 hours of partial oxidation reaction. Samples containing manganese displayed smaller H2/CO ratios and lower performance in partial oxidation.