885 resultados para Solid State Dye Sensitized Solar Cell
Resumo:
Solid State Ln-L compounds, where Ln stands for light trivalent lanthanides (La - Gd) and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, thermal behaviour and thermal decomposition of the isolated compounds.
Resumo:
Solid state M-L compounds, were M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, and thermal decomposition of the isolated compounds.
Resumo:
Solid State M-2-MeO-CP compounds, where M stands for bivalent metals (Mn, Fe, Co, Ni, Cu and Zn) and 2-MeO-CP is 2-methoxycinnamylidenepyruvate, were synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results were consistent with the general formula: M(L)2∙H2O. In both atmospheres (CO2, N2) the thermal decomposition occurs in consecutive steps which are characteristic of each compound. For CO2 atmosphere the final residues were: Mn3O4, Fe3O4, Co3O4, NiO, Cu2O and ZnO, while under N2 atmosphere the thermal decomposition is still observed at 1000 º C.
Resumo:
Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
In this study we discuss the electronic, structural, and optical properties of titanium dioxide nanoparticles, and also the properties of Ni(II) diimine dithiolato complexes as dyes in dye-sensitized TiO2 based solar cells. The abovementioned properties have been modeled by using computational codes based on the density functional theory. The results achieved show slight evidence on the structure-dependent band gap broadening, and clear blue-shifts in absorption spectra and refractive index functions of ultra-small TiO2 particles. It is also shown that these properties are strongly dependent on the shape of the nanoparticles. Regarding the Ni(II) diimine dithiolato complexes as dyes in dye-sensitized TiO2 based solar cells, it is shown that based on the experimental electrochemical investigation and DFT studies all studied diimine derivatives could serve as potential candidates for the light harvesting, but the e ciencies of the dyes studied are not very promising.
Resumo:
Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5) cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.
Resumo:
In this thesis the basic structure and operational principals of single- and multi-junction solar cells are considered and discussed. Main properties and characteristics of solar cells are briefly described. Modified equipment for measuring the quantum efficiency for multi-junction solar cell is presented. Results of experimental research single- and multi-junction solar cells are described.
Resumo:
Solid lipid particles have been investigated by food researchers due to their ability to enhance the incorporation and bioavailability of lipophilic bioactives in aqueous formulations. The objectives of this study were to evaluate the physicochemical stability and digestibility of lipid microparticles produced with tristearin and palm kernel oil. The motivation for conducting this study was the fact that mixing lipids can prevent the expulsion of the bioactive from the lipid core and enhance the digestibility of lipid structures. The lipid microparticles containing different palm kernel oil contents were stable after 60 days of storage according to the particle size and zeta potential data. Their calorimetric behavior indicated that they were composed of a very heterogeneous lipid matrix. Lipid microparticles were stable under various conditions of ionic strength, sugar concentration, temperature, and pH. Digestibility assays indicated no differences in the release of free fatty acids, which was approximately 30% in all analises. The in vitro digestibility tests showed that the amount of palm kernel in the particles did not affect the percentage of lipolysis, probably due to the high amount of surfactants used and/or the solid state of the microparticles.
Resumo:
The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.
Resumo:
The synthesis and studies of two classes of poly dentate ligands are presented as two projects. In project 1, four new carboxamide ligands have been synthesised via the condensation of 2,2',6,6'-tetrachloroformyl-4,4'-bipyridine or 2,6-dichloroformyl pyridine together with heterocyclic amines containing pyridine or pyrazole substituents. The coordination chemistry of these ligands has been investigated and studies have shown that with a Cu(II) salt, two carboxamide ligands LJ and L2 afford large clusters with stoichiometries [Cu8(L1)4Cl16].CHCl3.5H2O.7CH3OH (I) and [Cu9(L2)6Cl6].CH3OH.5H2O.(C2H5)3N (II) respectively. [molecular diagram availabel in pdf]. X-ray diffraction studies of cluster (I) reveal that it has approximate S4 symmetry and is comprised of four ligands and eight copper (II) centers. Here, coordination takes place via amide 0 atoms, and pyrazole nitrogens. This complex is the first reported example of an octanuclear copper cluster with a saddle-shaped structure. The second cluster comprises nine copper ions that are arranged in a cyclic array. Each ligand coordinates three copper centers and each copper ion shares two ligands to connect six ligands with nine copper ions. The amide nitrogens are completely deprotonated and both amide Nand 0 atoms coordinate the metal centres. The cluster has three-fold symmetry. There are six chloride ions, three of which are bridging two neighbouring Cu(II) centres. Magnetic studies of (I) and (II) reveal that both clusters display weak antiferromagnetic interactions between neighbouring Cu(II) centers at low temperature. In the second project, three complexes with stoichiometries [Fe[N302](SCN)2]2 (III), R,R-[Fe[N3O2](SCN)2 (IV) and R,R-]Fe[N3O2](CN)2] (V) were prepared and characterized, where [N302] is a pentadentate macrocycle. Complex (III) was prepared via the metal templated Schiff-base condensation of 2,2',6,6'-tetraacetyl-4,4'-bipyridine together with 3,6-dioxaoctane-I,8-diamine and comprises of a dimeric macro cycle where the two Fe(II) centres are in a pentagonal-bipyramidal environment with the [N302] ligands occupying the equatorial plane and two axial NCS ligands. Complexes (IV) and (V) were prepared via the condensation of 2,6-diacetylpyridine together with a chiral diamine in the presence of FeCh. The synthetic strategy for the preparation of the chiral diamine (4R,5R)-4,5-diphenyl-3,6-dioxa-I,8-octane-diamine was elucidated. The chirality of both macrocycles (IV) and (V) was probed by circular dichroism spectroscopy. The crystal structure of (IV) at 200 K contains two independent molecules in the unit cell, both of which contain a hepta-coordinated Fe(II) and axial NCS ligands. Variable temperature magnetic susceptibility and structural studies are consistent with a high spin Fe(II) complex and show no evidence of any spin crossover behaviour. In contrast, the bis cyanide derivative (V) crystallizes with two independent molecules in the unit cell, both of which have different coordination geometries consistent with different spin states for the two Fe(II) centres. At 250 K, the molecular structure of (V) shows the presence of both 7- and a 6-coordinate Fe(II) complexes in the crystal lattice. As the temperature is lowered, the molecules undergo a structural change and at 100 K the structural data is consistent with a 6- and 5-coordinate Fe(II) complex in the unit cell. Magnetic studies confirm that this complex undergoes a gradual, thermal, spin crossover transition in the solid state. Photomagnetic measurements indicate this is the first chiral Fe (II) sea complex to exhibit a LIESST.
Resumo:
The rapid developments in fields such as fibre optic communication engineering and integrated optical electronics have expanded the interest and have increased the expectations about guided wave optics, in which optical waveguides and optical fibres play a central role. The technology of guided wave photonics now plays a role in generating information (guided-wave sensors) and processing information (spectral analysis, analog-to-digital conversion and other optical communication schemes) in addition to its original application of transmitting information (fibre optic communication). Passive and active polymer devices have generated much research interest recently because of the versatility of the fabrication techniques and the potential applications in two important areas – short distant communication network and special functionality optical devices such as amplifiers, switches and sensors. Polymer optical waveguides and fibres are often designed to have large cores with 10-1000 micrometer diameter to facilitate easy connection and splicing. Large diameter polymer optical fibres being less fragile and vastly easier to work with than glass fibres, are attractive in sensing applications. Sensors using commercial plastic optical fibres are based on ideas already used in silica glass sensors, but exploiting the flexible and cost effective nature of the plastic optical fibre for harsh environments and throw-away sensors. In the field of Photonics, considerable attention is centering on the use of polymer waveguides and fibres, as they have a great potential to create all-optical devices. By attaching organic dyes to the polymer system we can incorporate a variety of optical functions. Organic dye doped polymer waveguides and fibres are potential candidates for solid state gain media. High power and high gain optical amplification in organic dye-doped polymer waveguide amplifier is possible due to extremely large emission cross sections of dyes. Also, an extensive choice of organic dye dopants is possible resulting in amplification covering a wide range in the visible region.
Resumo:
Microwave dielectric ceramics based on RETiTaO6 (RE = La, Cc, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb, Al, and In) were prepared using a conventional solid-state ceramic route. The structure and microstructure of the samples were analyzed using x-ray diffraction and scanning electron microscopy techniques. The sintered samples were characterized in the microwave frequency region. The ceramics based on Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, which crystallize in orthorhombic aeschynite structure, had a relatively high dielectric constant and positive T f while those based on Ho, Er, and Yb, with orthorhombic euxenite structure, had a low dielectric constant and negative Tf. The RETiTaO6 ceramics had a high-quality factor. The dielectric constant and unit cell volume of the ceramics increased with an increase in ionic radius of the rare-earth ions, but density decreased with it. The value of Tf increased with an increase in RE ionic radii, and a change in the sign of Tf occurred when the ionic radius was between 0.90 and 0.92 A. The results indicated that the boundary of the aeschynite to euxenite morphotropic phase change lay between DyTiTaO6 and HoTiTaO6. Low-loss ceramics like ErTiTaO6 (Er = 20.6, Qxf = 85,500), EuTiTaO6 (Er = 41.3, Qxf = 59,500), and YTiTaO6 (Er = 22.1, Q„xf = 51,400) are potential candidates for dielectric resonator applications
Resumo:
The length-dependent tuning of the fluorescence spectra of a dye doped polymer fiber is reported. The fiber is pumped sideways and the fluorescence is measured from one of the ends. The excitation of a finite length of dye doped fiber is done by a diode pumped solid state laser at a wavelength of 532 nm. The fluorescence emission is measured at various positions of the fiber starting from a position closer to the pumping region and then progressing toward the other end of the fiber. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped fiber are different. At longer distances of propagation, a decrease in optical loss coefficient is observed. The fluorescence peaks exhibit a redshift of 12 nm from 589 to 610 nm as the point of illumination progresses toward the detector end. This is attributed to the self-absorption and re-emission of the laser dye in the fiber.
Resumo:
This thesis presents a detailed account of a cost - effective approach towards enhanced production of alkaline protease at profitable levels using different fermentation designs employing cheap agro-industrial residues. It involves the optimisation of process parameters for the production of a thermostable alkaline protease by Vibrio sp. V26 under solid state, submerged and biphasic fermentations, production of the enzyme using cell immobilisation technology and the application of the crude enzyme on the deproteinisation of crustacean waste.The present investigation suggests an economic move towards Improved production of alkaline protease at gainful altitudes employing different fermentation designs utilising inexpensive agro-industrial residues. Moreover, the use of agro-industrial and other solid waste substrates for fermentation helps to provide a substitute in conserving the already dwindling global energy resources. Another alternative for accomplishing economically feasible production is by the use of immobilisation technique. This method avoids the wasteful expense of continually growing microorganisms. The high protease producing potential of the organism under study ascertains their exploitation in the utilisation and management of wastes. However, strain improvement studies for the production of high yielding variants using mutagens or by gene transfer are required before recommending them to Industries.Industries, all over the world, have made several attempts to exploit the microbial diversity of this planet. For sustainable development, it is essential to discover, develop and defend this natural prosperity. The Industrial development of any country is critically dependent on the intellectual and financial investment in this area. The need of the hour is to harness the beneficial uses of microbes for maximum utilisation of natural resources and technological yields. Owing to the multitude of applications in a variety of industrial sectors, there has always been an increasing demand for novel producers and resources of alkaline proteases as well as for innovative methods of production at a commercial altitude. This investigation forms a humble endeavour towards this perspective and bequeaths hope and inspiration for inventions to follow.