865 resultados para Solar system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth receives annually 1,5.1018 kWh of solar energy, which corresponds to 1000 times the world energy consumption in this period. This fact comes out that, besides being responsible for the maintenance of life on Earth, the solar radiation is in an inexhaustible energy source, with an enormous potential for use by systems capture and conversion into another form of energy. In many applications of low power systems that convert light directly into electricity, called photovoltaic advantageously replace other means of production processes, where its distribution is very significant. The determination of the power generated by such a system is of paramount importance for the design energy of its implementation and evaluation of the system itself. This study aims to determine a relationship between the maximum power generated by solar photovoltaic and characteristic parameters of the generator. This relationship allows to evaluate the performance of such a system. For simulations of the developed equations were used 3 photovoltaic modules with an output of 100 Wp each, and data collection was performed during one year by enrolling in addition to meteorological data, solar irradiance incident on the modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a self-sustainable lighting system using ultracapacitor as a storage device, replacing the conventional battery, using solar energy as the only energy supplier. A detailed study of solar panels, switched mode converters and ultracapacitors was made, in order to design a circuit capable of capturing solar energy and transfer it efficiently to a bank of ultracapacitors. Later, at nighttime, this energy is used for lighting in LED luminaires which have high luminous efficiency and high reliability index. This work presents the design of the solar panel, ultracapacitors bank, the development of the voltage converter circuit and charger working at the maximum power point of the solar panel. All subsystems were simulated and it was shown that the use of ultracapacitors is feasible to feed a LED lamp with enough brightness for a person to walk at night, for two night shifts, using a capacitive bank with twenty-four ultracapacitors. Replacing the battery by an ultracapacitor allows a faster recharge, with low maintenance costs, since ultracapacitors have a lifetime bigger than batteries; beyond reducing the environmental impact, as they don't use potentially toxic chemical compounds

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a self-sustainable lighting system using ultracapacitor as a storage device, replacing the conventional battery, using solar energy as the only energy supplier. A detailed study of solar panels, switched mode converters and ultracapacitors was made, in order to design a circuit capable of capturing solar energy and transfer it efficiently to a bank of ultracapacitors. Later, at nighttime, this energy is used for lighting in LED luminaires which have high luminous efficiency and high reliability index. This work presents the design of the solar panel, ultracapacitors bank, the development of the voltage converter circuit and charger working at the maximum power point of the solar panel. All subsystems were simulated and it was shown that the use of ultracapacitors is feasible to feed a LED lamp with enough brightness for a person to walk at night, for two night shifts, using a capacitive bank with twenty-four ultracapacitors. Replacing the battery by an ultracapacitor allows a faster recharge, with low maintenance costs, since ultracapacitors have a lifetime bigger than batteries; beyond reducing the environmental impact, as they don't use potentially toxic chemical compounds

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adaptation of a commercially available ice machine for autonomous photovoltaic operation without batteries is presented. In this adaptation a 1040 W(p) photovoltaic array directly feeds a variable-speed drive and a 24 V(dc) source. The drive runs an induction motor coupled by belt-and-pulley to an open reciprocating compressor, while the dc source supplies a solenoid valve and the control electronics. Motor speed and refrigerant evaporation pressure are set aiming at continuously matching system power demand to photovoltaic power availability. The resulting system is a simple integration of robust, standard, readily available parts. It produces 27 kg of ice in a clear-sky day and has ice production costs around US$0.30/kg. Although a few machine features might be specific to Brazil, its technical and economical guidelines are applicable elsewhere. Copyright (C); 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have done a new analysis of the available observations of the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the occurrence of aliases and the additional bodies-the planets f and g-announced in Vogt et al. (Astrophys J 723:954-965, 2010). Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the habitable zone (HZ) of the star GJ581. This region, for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period a parts per thousand 450 days, but we are judicious about any affirmation concerning this body because its signal is in the threshold of detection and the high period is in a spectral region where the occurrence of aliases is very common. Besides, we outline some dynamical features of the HZ with the dynamical map and point out the role played by some resonances laying there.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R similar to 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of sigma less than or similar to 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as sigma similar or equal to 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 +/- 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only +0.02 +/- 0.02 dex, +0.02 +/- 0.01 dex and +0.01 +/- 0.01 km s(-1) higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 +/- 0.02 M-circle dot and that it is similar to 1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T-cond greater than or similar to 1000 K) are slightly (similar to 0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T-cond in differential abundances (twins -HIP 56948) can be reproduced very well by adding similar to 3 M-circle plus of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we analyze the long term variability of rainfall and temperature (1912-2008) of Santa Maria (29 degrees S, 53 degrees W) and its possible connection with natural influences such as solar activity and ENSO. Temperature and rainfall present similar frequencies as revealed by spectral analyses. This analysis shows a large number of short periods between 2-8 years and periods of 11.8-12.3, 19.1-21.0, and 64.3-82.5 years. The cross correlation for rainfall and temperature versus Southern Oscillation Index (SOI) have higher cross-power around 2-8 yr. Rainfall and temperature versus sunspot number (Rz) showed higher cross-power around the 11-yr solar cycle period. A high and continuous cross correlation was observed for Rz-22 yr versus rainfall and temperature. Furthermore, the power between 22-yr solar cycle and meteorological parameters was higher than that obtained with the 11-yr solar cycle, suggesting that the effect of Hale cycle on climate may be stronger than the Schwabe cycle effect. These results indicate that the variability of rainfall and temperature is closely related to the variation of the Southern Oscillation Index and solar activity, and that the El Nino Southern Oscillation and solar activity probably play an important role in the climate system over Southern Brazil. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent nanostructure ZnO:CeO2 and ZnO thin films to use as solar protector were prepared by non-alkoxide sol-gel process and deposited on boronsilicate glass substrate by dip-coating technique and then heated at 300-500 degrees C. The films were characterized structurally, morphologically and optically by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission gun-scanning electron microscopy (FEG-SEM), scanning electron microscopy (SEM) and UV-Vis transmittance spectroscopy. The coatings presented high transparency in the visible region and excellent absorption in the UV. The band gap of the deposited films was estimated between 3.10 and 3.18 eV. Absorption of the films in the UV was increased by presence of cerium. The results suggest that the materials are promising candidates to use as coating solar protective. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programa de doctorado de Gestión de recursos vivos marinos y medioambiente

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Adaptive Optic (AO) system is a fundamental requirement of 8m-class telescopes. We know that in order to obtain the maximum possible resolution allowed by these telescopes we need to correct the atmospheric turbulence. Thanks to adaptive optic systems we are able to use all the effective potential of these instruments, drawing all the information from the universe sources as best as possible. In an AO system there are two main components: the wavefront sensor (WFS) that is able to measure the aberrations on the incoming wavefront in the telescope, and the deformable mirror (DM) that is able to assume a shape opposite to the one measured by the sensor. The two subsystem are connected by the reconstructor (REC). In order to do this, the REC requires a “common language" between these two main AO components. It means that it needs a mapping between the sensor-space and the mirror-space, called an interaction matrix (IM). Therefore, in order to operate correctly, an AO system has a main requirement: the measure of an IM in order to obtain a calibration of the whole AO system. The IM measurement is a 'mile stone' for an AO system and must be done regardless of the telescope size or class. Usually, this calibration step is done adding to the telescope system an auxiliary artificial source of light (i.e a fiber) that illuminates both the deformable mirror and the sensor, permitting the calibration of the AO system. For large telescope (more than 8m, like Extremely Large Telescopes, ELTs) the fiber based IM measurement requires challenging optical setups that in some cases are also impractical to build. In these cases, new techniques to measure the IM are needed. In this PhD work we want to check the possibility of a different method of calibration that can be applied directly on sky, at the telescope, without any auxiliary source. Such a technique can be used to calibrate AO system on a telescope of any size. We want to test the new calibration technique, called “sinusoidal modulation technique”, on the Large Binocular Telescope (LBT) AO system, which is already a complete AO system with the two main components: a secondary deformable mirror with by 672 actuators, and a pyramid wavefront sensor. My first phase of PhD work was helping to implement the WFS board (containing the pyramid sensor and all the auxiliary optical components) working both optical alignments and tests of some optical components. Thanks to the “solar tower” facility of the Astrophysical Observatory of Arcetri (Firenze), we have been able to reproduce an environment very similar to the telescope one, testing the main LBT AO components: the pyramid sensor and the secondary deformable mirror. Thanks to this the second phase of my PhD thesis: the measure of IM applying the sinusoidal modulation technique. At first we have measured the IM using a fiber auxiliary source to calibrate the system, without any kind of disturbance injected. After that, we have tried to use this calibration technique in order to measure the IM directly “on sky”, so adding an atmospheric disturbance to the AO system. The results obtained in this PhD work measuring the IM directly in the Arcetri solar tower system are crucial for the future development: the possibility of the acquisition of IM directly on sky means that we are able to calibrate an AO system also for extremely large telescope class where classic IM measurements technique are problematic and, sometimes, impossible. Finally we have not to forget the reason why we need this: the main aim is to observe the universe. Thanks to these new big class of telescopes and only using their full capabilities, we will be able to increase our knowledge of the universe objects observed, because we will be able to resolve more detailed characteristics, discovering, analyzing and understanding the behavior of the universe components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic (PV) solar panels generally produce electricity in the 6% to 16% efficiency range, the rest being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PVT) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PVT system globally from different point of views in order to evaluate advantages and disadvantages of this technology and its possible uses. In particular in Chapter II, the development of the PVT absorber numerical optimization by a genetic algorithm has been carried out analyzing different internal channel profiles in order to find a right compromise between performance and technical and economical feasibility. Therefore in Chapter III ,thanks to a mobile structure built into the university lab, it has been compared experimentally electrical and thermal output power from PVT panels with separated photovoltaic and solar thermal productions. Collecting a lot of experimental data based on different seasonal conditions (ambient temperature,irradiation, wind...),the aim of this mobile structure has been to evaluate average both thermal and electrical increasing and decreasing efficiency values obtained respect to separate productions through the year. In Chapter IV , new PVT and solar thermal equation based models in steady state conditions have been developed by software Dymola that uses Modelica language. This permits ,in a simplified way respect to previous system modelling softwares, to model and evaluate different concepts about PVT panel regarding its structure before prototyping and measuring it. Chapter V concerns instead the definition of PVT boundary conditions into a HVAC system . This was made trough year simulations by software Polysun in order to finally assess the best solar assisted integrated structure thanks to F_save(solar saving energy)factor. Finally, Chapter VI presents the conclusion and the perspectives of this PhD work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diameters of traditional dish concentrators can reach several tens of meters, the construction of monolithic mirrors being difficult at these scales: cheap flat reflecting facets mounted on a common frame generally reproduce a paraboloidal surface. When a standard imaging mirror is coupled with a PV dense array, problems arise since the solar image focused is intrinsically circular. Moreover, the corresponding irradiance distribution is bell-shaped in contrast with the requirement of having all the cells under the same illumination. Mismatch losses occur when interconnected cells experience different conditions, in particular in series connections. In this PhD Thesis, we aim at solving these issues by a multidisciplinary approach, exploiting optical concepts and applications developed specifically for astronomical use, where the improvement of the image quality is a very important issue. The strategy we propose is to boost the spot uniformity acting uniquely on the primary reflector and avoiding the big mirrors segmentation into numerous smaller elements that need to be accurately mounted and aligned. In the proposed method, the shape of the mirrors is analytically described by the Zernike polynomials and its optimization is numerically obtained to give a non-imaging optics able to produce a quasi-square spot, spatially uniform and with prescribed concentration level. The freeform primary optics leads to a substantial gain in efficiency without secondary optics. Simple electrical schemes for the receiver are also required. The concept has been investigated theoretically modeling an example of CPV dense array application, including the development of non-optical aspects as the design of the detector and of the supporting mechanics. For the method proposed and the specific CPV system described, a patent application has been filed in Italy with the number TO2014A000016. The patent has been developed thanks to the collaboration between the University of Bologna and INAF (National Institute for Astrophysics).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized water etching is proposed, for the first time, as the simplest solution to optimize the effect of shunt resistance, stability and metal-semiconductor inter-diffusion at the back contact. In continue, oxygen incorporation is proposed while CdTe layer deposition. This technique has been rarely examined through R.F sputtering deposition of such devices. The above experiments are characterized electrically and optically by current-voltage characterization, scanning electron microscopy, x-ray diffraction and optical spectroscopy. Furthermore, for the first time, the degradation rate of CdTe devices over time is numerically simulated through AMPS and SCAPS simulators. It is proposed that the instability of electrical parameters is coupled with the material properties and external stresses (bias, temperature and illumination). Then, CIGS materials are simulated and characterized by several techniques such as surface photovoltage spectroscopy is used (as a novel idea) to extract the band gap of graded band gap CIGS layers, surface or bulk defect states. The surface roughness is scanned by atomic force microscopy on nanometre scale to obtain the surface topography of the film. The modified equivalent circuits are proposed and the band gap graded profiles are simulated by AMPS simulator and several graded profiles are examined in order to optimize their thickness, grading strength and electrical parameters. Furthermore, the transport mechanisms and Auger generation phenomenon are modelled in CIGS devices.