977 resultados para Slash (Logging)


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole-core (WC) measurements of low-field magnetic susceptibility (MS) provide an extremely simple, rapid, and nondestructive technique for high-resolution core logging and lithostratigraphic correlation between subsidiary holes at Ocean Drilling Program (ODP) sites. This is particularly useful for reconstructing composite, stratigraphically continuous sequences for individual ODP sites by splicing the uninterrupted records obtained from subsections of offset cores recovered from adjacent holes. Correlation between the WCMS profiles of holes drilled at different sites is also possible in some instances, especially when lithologic variations at each site are controlled by regional paleoceanographic or global (i.e., orbitally forced) paleoclimatic changes. In such circumstances, WCMS may also be used as a proxy paleoclimatic indicator, duly assisting climatostratigraphic zonation of the recovered sequence by more conventional microfossil and isotopic techniques. High-resolution WCMS profiles are also useful in detecting intervals of the recovered sequence affected by drilling disturbance, in the form of contamination by pipe rust or similar metallic artifacts as well as discontinuities related to repenetration of the corer or loss of material between successively cored intervals. Stratigraphic intervals that have been affected by early (suboxic) diagenesis resulting from a high initial organic matter content of the sediment are also readily identified by WCMS logging. The MS signal of horizons affected by suboxic diagensis is typically degraded in proportion to the duration and intensity (related to initial Corg concentration) of organic matter remineralization. The lowering of MS values during suboxic diagenesis results from "dissolution" (bacterially mediated ionic dissociation) of magnetic iron and manganese oxides and oxyhydroxides in the sediment. It is to be hoped that, on future ODP (or similar) cruises, WCMS logging will cease to be regarded as a mere adjunct to paleomagnetic measurements, but rather as a simple, yet powerful, lithostratigraphic tool, directly analogous to downhole geophysical logging tools, and complimentary to shipboard techniques for whole-core measurements of physical properties (e.g., P-wave logging, GRAPE, etc.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pelagic sediments recording an extreme and short-lived global warming event, the Late Paleocene Thermal Maximum (LPTM), were recovered from Hole 999B (Colombian Basin) and Holes 1001A and 1001B (lower Nicaraguan Rise) in the Caribbean Sea during Ocean Drilling Program Leg 165. The LPTM consists of a 0.3-0.97 m calcareous claystone to claystone horizon. High-resolution downhole logging (Formation MicroScanner [FMS]), standard downhole logs (resistivity, velocity, density, natural gamma ray, and geochemical log), and non-destructive chemical and physical property (multisensor core logger [MSCL] and X-ray fluorescence [XRF] core scanner) data were used to identify composite sections from parallel holes and to record sedimentological and environmental changes associated with the LPTM. Downhole logging data indicate an abrupt and distinct difference in physical and chemical properties that extend for tens of meters above and below the LPTM. These observations indicate a rapid environmental change at the LPTM, which persists beyond the LPTM anomaly. Comparisons of gamma-ray attenuation porosity evaluator (GRAPE) densities from MSCL logging on split cores with FMS resistivity values allows core-to-log correlation with a high degree of accuracy. High-resolution magnetic susceptibility measurements of the cores are compared with elemental concentrations (e.g., Fe, Ca) analyzed by high-resolution XRF scanning. The high-resolution data obtained from several detailed core and downhole logging methods are the key to the construction of composite sections, the correlation of both adjacent holes and distant sites, and core-log integration. These continuous-depth series reveal the LPTM as a multiphase event with a nearly instantaneous onset, followed by a much different set of physical and chemical conditions of short duration, succeeded by a longer transition to a new, more permanent set of environmental circumstances. The estimated duration of these 'phases' are consistent with paleontological and isotopic studies of the LPTM