1000 resultados para Sistemas de controle linear
Resumo:
This work presents a description of models development at DigSILENT PowerFactoryTM program for the transient stability study in power systems with wind turbine. The main goal is to make available means to use a dynamic simulation program in power systems, widely published, and utilize it as a tool that helps in programs results evaluations used for this intent. The process of simulations and analyses results starts after the models setting description phase. The results obtained by the DigSILENT PowerFactoryTM and ATP, program chosen to the validation also international recognized, are compared during this phase. The main tools and guide lines of PowerFactoryTM program use are presented here, directing these elements to the solution of the approached problem. For the simulation it is used a real system which it will be connected a wind farm. Two different technologies of wind turbines were implemented: doubly-fed induction generator with frequency converter, connecting the rotor to the stator and to the grid, and synchronous wind generator with frequency converter, interconnecting the generator to the grid. Besides presenting the basic conceptions of dynamic simulation, it is described the implemented control strategies and models of turbine and converters. The stability of the wind turbine interconnected to grid is analyzed in many operational conditions, resultant of diverse kinds of disturbances
Resumo:
Hypertension is a dangerous disease that can cause serious harm to a patient health. In some situations the necessity to control this pressure is even greater, as in surgical procedures and post-surgical patients. To decrease the chances of a complication, it is necessary to reduce blood pressure as soon as possible. Continuous infusion of vasodilators drugs, such as sodium nitroprusside (SNP), rapidly decreased blood pressure in most patients, avoiding major problems. Maintaining the desired blood pressure requires constant monitoring of arterial blood pressure and frequently adjusting the drug infusion rate. Manual control of arterial blood pressure by clinical personnel is very demanding, time consuming and, as a result, sometimes of poor quality. Thus, the aim of this work is the design and implementation of a database of tuned controllers based on patients models, in order to find a suitable PID to be embedded in a Programmable Integrated Circuit (PIC), which has a smaller cost, smaller size and lower power consumption. For best results in controlling the blood pressure and choosing the adequate controller, tuning algorithms, system identification techniques and Smith predictor are used. This work also introduces a monitoring system to assist in detecting anomalies and optimize the process of patient care.
Resumo:
The sanitation companies from Brazil has a great challenge for the XXI century: seek to mitigate the rate of physical waste (water, chemicals and electricity) and financial waste caused by inefficient operating systems drinking water supply, considering that currently we already face, in some cases, the scarcity of water resources. The supply systems are increasingly complex as they seek to minimize waste and at the same time better serve the growing number of users. However, this technological change is to reduce the complexity of the challenges posed by the need to include users with higher quality and efficiency in services. A major challenge for companies of water supplies is to provide a good quality service contemplating reducing expenditure on electricity. In this situation we developed a research by a method that seeks to control the pressure of the distribution systems that do not have the tank in your setup and the water comes out of the well directly to the distribution system. The method of pressure control (intelligent control) uses fuzzy logic to eliminate the waste of electricity and the leaks from the production of pumps that inject directly into the distribution system, which causes waste of energy when the consumption of households is reduced causing the saturation of the distribution system. This study was conducted at Green Club II condominium, located in the city of Parnamirim, state of Rio Grande do Norte, in order to study the pressure behavior of the output of the pump that injects water directly into the distribution system. The study was only possible because of the need we had to find a solution to some leaks in the existing distribution system and the extensions of the respective condominium residences, which sparked interest in developing a job in order to carry out the experiments contained in this research
Resumo:
This work proposes a kinematic control scheme, using visual feedback for a robot arm with five degrees of freedom. Using computational vision techniques, a method was developed to determine the cartesian 3d position and orientation of the robot arm (pose) using a robot image obtained through a camera. A colored triangular label is disposed on the robot manipulator tool and efficient heuristic rules are used to obtain the vertexes of that label in the image. The tool pose is obtained from those vertexes through numerical methods. A color calibration scheme based in the K-means algorithm was implemented to guarantee the robustness of the vision system in the presence of light variations. The extrinsic camera parameters are computed from the image of four coplanar points whose cartesian 3d coordinates, related to a fixed frame, are known. Two distinct poses of the tool, initial and final, obtained from image, are interpolated to generate a desired trajectory in cartesian space. The error signal in the proposed control scheme consists in the difference between the desired tool pose and the actual tool pose. Gains are applied at the error signal and the signal resulting is mapped in joint incrementals using the pseudoinverse of the manipulator jacobian matrix. These incrementals are applied to the manipulator joints moving the tool to the desired pose
Resumo:
There are two main approaches for using in adaptive controllers. One is the so-called model reference adaptive control (MRAC), and the other is the so-called adaptive pole placement control (APPC). In MRAC, a reference model is chosen to generate the desired trajectory that the plant output has to follow, and it can require cancellation of the plant zeros. Due to its flexibility in choosing the controller design methodology (state feedback, compensator design, linear quadratic, etc.) and the adaptive law (least squares, gradient, etc.), the APPC is the most general type of adaptive control. Traditionally, it has been developed in an indirect approach and, as an advantage, it may be applied to non-minimum phase plants, because do not involve plant zero-pole cancellations. The integration to variable structure systems allows to aggregate fast transient and robustness to parametric uncertainties and disturbances, as well. In this work, a variable structure adaptive pole placement control (VS-APPC) is proposed. Therefore, new switching laws are proposed, instead of using the traditional integral adaptive laws. Additionally, simulation results for an unstable first order system and simulation and practical results for a three-phase induction motor are shown
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
The main objective of work is to show procedures to implement intelligent control strategies. This strategies are based on fuzzy scheduling of PID controllers, by using only standard function blocks of this technology. Then, the standardization of Foundation Fieldbus is kept. It was developed an environment to do the necessary tests, it validates the propose. This environment is hybrid, it has a real module (the fieldbus) and a simulated module (the process), although the control signals and measurement are real. Then, it is possible to develop controllers projects. In this work, a fuzzy supervisor was developed to schedule a network of PID controller for a non-linear plant. Analyzing its performance results to the control and regulation problem
Resumo:
The present work shows the development and construction of a robot manipulator with two rotary joints and two degrees of freedom, driven by three-phase induction motors. The positions of the arm and base are made, for comparison, by a fuzzy controller and a PID controller implemented in LabVIEW® programming environment. The robot manipulator moves in an area equivalent to a quarter of a sphere. Experimental results have shown that the fuzzy controller has superior performance to PID controller when tracking single and multiple step trajectories, for the cases of load and no load
Resumo:
The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional.
Resumo:
In conventional robot manipulator control, the desired path is specified in cartesian space and converted to joint space through inverse kinematics mapping. The joint references generated by this mapping are utilized for dynamic control in joint space. Thus, the end-effector position is, in fact, controlled indirectly, in open-loop, and the accuracy of grip position control directly depends on the accuracy of the available kinematic model. In this report, a new scheme for redundant manipulator kinematic control, based on visual servoing is proposed. In the proposed system, a robot image acquired through a CCD camera is processed in order to compute the position and orientation of each link of the robot arm. The robot task is specified as a temporal sequence of reference images of the robot arm. Thus, both the measured pose and the reference pose are specified in the same image space, and its difference is utilized to generate a cartesian space error for kinematic control purposes. The proposed control scheme was applied in a four degree-of-freedom planar redundant robot arm, experimental results are shown
Resumo:
This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot
Resumo:
The using of supervision systems has become more and more essential in accessing, managing and obtaining data of industrial processes, because of constant and frequent developments in industrial automation. These supervisory systems (SCADA) have been widely used in many industrial environments to store process data and to control the processes in accordance with some adopted strategy. The SCADA s control hardware is the set of equipments that execute this work. The SCADA s supervision software accesses process data through the control hardware and shows them to the users. Currently, many industrial systems adopt supervision softwares developed by the same manufacturer of the control hardware. Usually, these softwares cannot be used with other equipments made by distinct manufacturers. This work proposes an approach for developing supervisory systems able to access process information through different control hardwares. An architecture for supervisory systems is first defined, in order to guarantee efficiency in communication and data exchange. Then, the architecture is applied in a supervisory system to monitor oil wells that use distinct control hardwares. The implementation was modeled and verified by using the formal method of the Petri networks. Finally, experimental results are presented to demonstrate the applicability of the proposed solution
Resumo:
The control, automation and optimization areas help to improve the processes used by industry. They contribute to a fast production line, improving the products quality and reducing the manufacturing costs. Didatic plants are good tools for research in these areas, providing a direct contact with some industrial equipaments. Given these capabilities, the main goal of this work is to model and control a didactic plant, which is a level and flow process control system with an industrial instrumentation. With a model it is possible to build a simulator for the plant that allows studies about its behaviour, without any of the real processes operational costs, like experiments with controllers. They can be tested several times before its application in a real process. Among the several types of controllers, it was used adaptive controllers, mainly the Direct Self-Tuning Regulators (DSTR) with Integral Action and the Gain Scheduling (GS). The DSTR was based on Pole-Placement design and use the Recursive Least Square to calculate the controller parameters. The characteristics of an adaptive system was very worth to guarantee a good performance when the controller was applied to the plant
Resumo:
New versions of SCTP protocol allow the implementation of handover procedures in the transport layer, as well as the supply of a partially reliable communication service. A communication architecture is proposed herein, integrating SCTP with the session initiation protocol, SIP, besides additional protocols. This architecture is intended to handle voice applications over IP networks with mobility requirements. User localization procedures are specified in the application layer as well, using SIP, as an alternative mean to the mechanisms used by traditional protocols, that support mobility in the network layer. The SDL formal specification language is used to specify the operation of a control module, which coordinates the operation of the system component protocols. This formal specification is intended to prevent ambiguities and inconsistencies in the definition of this module, assisting in the correct implementation of the elements of this architecture
Resumo:
This paper describes the study, computer simulation and feasibility of implementation of vector control speed of an induction motor using for this purpose the Extended Kalman Filter as an estimator of rotor flux. The motivation for such work is the use of a control system that requires no sensors on the machine shaft, thus providing a considerable cost reduction of drives and their maintenance, increased reliability, robustness and noise immunity as compared to control systems with conventional sensors