986 resultados para Sensory processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calbindin and calretinin are two homologous calcium-binding proteins that are expressed by subpopulations of primary sensory neurons. In the present work, we have studied the distribution of the neurons expressing calbindin and calretinin in dorsal root ganglia of the rat and their peripheral projections. Calbindin and calretinin immunoreactivities were expressed by subpopulations of large- and small-sized primary sensory neurons and colocalized in a majority of large-sized ones. The axons emerging from calbindin- or calretinin-immunoreactive neurons innervated muscle spindles, Pacini corpuscles and subepidermal lamellar corpuscles in the glabrous skin, formed palisades of lanceolate endings around hairs and vibrissae, and gave rise to intraepidermal nerve endings in the digital skin. Since most of these afferents are considered as rapidly adapting mechanoreceptors, it is concluded that calbindin- or calretinin-expressing neurons innervate particular mechanoreceptors that display physiological characteristics of rapid adaptation to stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory neuronopathies (SNNs) encompass paraneoplastic, infectious, dysimmune, toxic, inherited, and idiopathic disorders. Recently described diagnostic criteria allow SNN to be differentiated from other forms of sensory neuropathy, but there is no validated strategy based on routine clinical investigations for the etiological diagnosis of SNN. In a multicenter study, the clinical, biological, and electrophysiological characteristics of 148 patients with SNN were analyzed. Multiple correspondence analysis and logistic regression were used to identify patterns differentiating between forms of SNNs with different etiologies. Models were constructed using a study population of 88 patients and checked using a test population of 60 cases. Four patterns were identified. Pattern A, with an acute or subacute onset in the four limbs or arms, early pain, and frequently affecting males over 60 years of age, identified mainly paraneoplastic, toxic, and infectious SNN. Pattern B identified patients with progressive SNN and was divided into patterns C and D, the former corresponding to patients with inherited or slowly progressive idiopathic SNN with severe ataxia and electrophysiological abnormalities and the latter to patients with idiopathic, dysimmune, and sometimes paraneoplastic SNN with a more rapid course than in pattern C. The diagnostic strategy based on these patterns correctly identified 84/88 and 58/60 patients in the study and test populations, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pure sensory neuropathy caused by lymphocytic infiltration of the dorsal root ganglia has been reported in a few patients with Sjögren's syndrome. The clinical, immunological, and electromyographic findings of five patients with this type of neuropathy and primary Sjögren's syndrome were reviewed. Typical clinical indications were the presence of a chronic asymmetrical sensory deficit, initial disease in the hands with a predominant loss of the vibratory and joint position senses, and an association with Adie's pupil syndrome or trigeminal sensory neuropathy. The simultaneous impairment of the central and peripheral evoked cortical potentials suggested that there was a lesion of the neuronal cell body. The neuropathy preceded the diagnosis of Sjögren's syndrome in four patients. Four patients were positive for Ro antibodies, but systemic vasculitis or malignancy was not found after a mean follow up of six years. These findings indicate that in patients with a sensory neuropathy the diagnosis of Sjögren's syndrome has to be considered, even if the patient denies the presence of sicca symptoms, and that appropriate tests must be carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maps of Iowa's Biodiesel and Ethanol Processing Plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In chicken dorsal root ganglia, calretinin immunoreactivity is expressed by a subpopulation of large A-neurons, most of which co-express calbindin D-28k. The myelinated axons of these neurons selectively innervate all muscle spindles and most Herbst corpuscles associated to feathers in hindlimbs. It is suggested that the presence of calretinin in primary afferents may be correlated with the electrophysiological properties of rapidly adapting mechanoreceptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory neurons which innervate neuromuscular spindles in the chicken are calbindin-immunoreactive. The influence exerted by developing skeletal muscle on the expression of calbindin immunoreactivity by subpopulations of dorsal root ganglion (DRG) cells in the chick embryo was tested in vitro in coculture with myoblasts, in conditioned medium (CM) prepared from myoblasts and in control cultures of DRG cells alone. Control cultures of DRG cells grown at the 6th embryonic day (E6) did not show any calbindin-immunostained ganglion cell. In coculture of myoblasts previously grown for 14 days, about 3% of calbindin-immunoreactive ganglion cells were detected while about 1% were observed in some cultures grown in CM. Fibroblasts from various sources were devoid of effect. Skin or kidney cells were more active than myoblasts to initiate calbindin expression by subpopulations of DRG cells in coculture or, to a lesser degree, in CM. The results suggest that cellular factors would rather induce calbindin expression in certain sensory neurons than ensure a selective neuronal survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain is a major health issue and is frequently accompanied by allodynia (painful sensations in response to normally non-painful stimulations), and unpleasant paresthesia/dysesthesia, pointing to alterations in sensory pathways normally dedicated to the processing of non-nociceptive information. Interestingly, mounting evidence indicate that central glial cells are key players in allodynia, partly due to changes in the astrocytic capacity to scavenge extracellular glutamate and gamma-aminobutyric acid (GABA), through changes in their respective transporters (EAAT and GAT). In the present study, we investigated the glial changes occurring in the dorsal column nuclei, the major target of normally innocuous sensory information, in the rat spared nerve injury (SNI) model of neuropathic pain. We report that together with a robust microglial and astrocytic reaction in the ipsilateral gracile nucleus, the GABA transporter GAT-1 is upregulated with no change in GAT-3 or glutamate transporters. Furthermore, [(3)H] GABA reuptake on crude synaptosome preparation shows that transporter activity is functionally increased ipsilaterally in SNI rats. This GAT-1 upregulation appears evenly distributed in the gracile nucleus and colocalizes with astrocytic activation. Neither glial activation nor GAT-1 modulation was detected in the cuneate nucleus. Together, the present results point to GABA transport in the gracile nucleus as a putative therapeutic target against abnormal sensory perceptions related to neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better integration of the information conveyed by traces within intelligence-led framework would allow forensic science to participate more intensively to security assessments through forensic intelligence (part I). In this view, the collection of data by examining crime scenes is an entire part of intelligence processes. This conception frames our proposal for a model that promotes to better use knowledge available in the organisation for driving and supporting crime scene examination. The suggested model also clarifies the uncomfortable situation of crime scene examiners who must simultaneously comply with justice needs and expectations, and serve organisations that are mostly driven by broader security objectives. It also opens new perspective for forensic science and crime scene investigation, by the proposal to follow other directions than the traditional path suggested by dominant movements in these fields.