922 resultados para Semiconductor quantum dot
Resumo:
A new method is realized for the growth of self-formed quantum dots. We identify that dislocation-free islands can be formed by the strain from the strained superlattice taken as a whole. Unlike the Stranski-Krastanow (S-K) growth mode, the islands do not form during the growth of the corresponding strained single layers. Highly uniform quantum dots can be self-formed via this mechanism. The low temperature spectra of self-formed InGaAs/GaAs quantum dot superlattices grown on a (001) GaAs substrate have a full width at half maximum of 26-34 meV, indicating a better uniformity of quantum dot size than those grown in the S-K mode. This method can provide great degrees of freedom in designing possible quantum dot devices. 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively.
Resumo:
MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.
Resumo:
Near infrared (NIR) light emitting diodes employing composites of an IR fluorescent dye, CdSe/CdScore/shell semiconductor quantum dots and poly( N-vinylcarbazole) (PVK) have been demonstrated. The device, with a configuration of indium-tin-oxide (ITO)//PEDOT:PSS//PVK:NIR Dye:CdSe/CdS//Al, had a turn-on voltage of 7 V, emitted the NIR light with a maximum at 890 nm and the irradiance intensity of 96 mu W. The electroluminescence efficiency of 0.02% was achieved at a current density of 13 mA cm(-2).
Resumo:
Hybrid organic/inorganic white light-emitting diodes (LEDs) were fabricated of semiconductor polymer poly(N-vinylcarbazole) (PVK) doped with CdSe/CdS core-shell semiconductor quantum dots (QDs). The device, with a structure of indium-tin-oxide (ITO)vertical bar 3,4-polyethylene-dioxythiophene- polystyrene sulfonate (PEDOT:PSS)vertical bar PVK:CdSe/CdS vertical bar Al, emitted a pure white light spanning the whole visible region from 400 to 800 nm. The Commission Internationale del'Eclairage coordinates (CIE) remained at x = 0.33, y = 0.34 at wide applied voltages. The maximum brightness and electroluminescence (EL) efficiency reached 180 cd m(-2) at 19 V and 0.21 cd A(-1) at current density of 2 mA cm(-2), respectively. The realization of the pure white light emission is attributed to the incomplete energy and charge transfer from PVK to CdSe/CdS core-shell QDs.
Resumo:
We have imaged the fluorescence from a single quantum dot cluster using an apertureless scanning near-field optical microscope. When a sharp gold tip is brought within a few nanometers from the sample surface, the resulting enhancement in quantum dot fluorescence in the vicinity of the tip leads to a resolution of about 60 nm. We determine this enhancement of the fluorescence to be about fourfold in magnitude, which is consistent with the value expected as a result of competition between fluorescence quenching and electromagnetic field enhancement. (C) 2005 American Institute of Physics.
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.
Resumo:
The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-n values. Results for selected numbers of electrons and confining potentials are discussed.
Resumo:
We have carried out a systematic analysis of the transverse dipole spin response of a large-size quantum dot within time-dependent current density functional theory. Results for magnetic fields corresponding to integer filling factors are reported, as well as a comparison with the longitudinal dipole spin response. As in the two-dimensional electron gas, the spin response at high-spin magnetization is dominated by a low-energy transverse mode.
Resumo:
The main focus and concerns of this PhD thesis is the growth of III-V semiconductor nanostructures (Quantum dots (QDs) and quantum dashes) on silicon substrates using molecular beam epitaxy (MBE) technique. The investigation of influence of the major growth parameters on their basic properties (density, geometry, composition, size etc.) and the systematic characterization of their structural and optical properties are the core of the research work. The monolithic integration of III-V optoelectronic devices with silicon electronic circuits could bring enormous prospect for the existing semiconductor technology. Our challenging approach is to combine the superior passive optical properties of silicon with the superior optical emission properties of III-V material by reducing the amount of III-V materials to the very limit of the active region. Different heteroepitaxial integration approaches have been investigated to overcome the materials issues between III-V and Si. However, this include the self-assembled growth of InAs and InGaAs QDs in silicon and GaAx matrices directly on flat silicon substrate, sitecontrolled growth of (GaAs/In0,15Ga0,85As/GaAs) QDs on pre-patterned Si substrate and the direct growth of GaP on Si using migration enhanced epitaxy (MEE) and MBE growth modes. An efficient ex-situ-buffered HF (BHF) and in-situ surface cleaning sequence based on atomic hydrogen (AH) cleaning at 500 °C combined with thermal oxide desorption within a temperature range of 700-900 °C has been established. The removal of oxide desorption was confirmed by semicircular streaky reflection high energy electron diffraction (RHEED) patterns indicating a 2D smooth surface construction prior to the MBE growth. The evolution of size, density and shape of the QDs are ex-situ characterized by atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The InAs QDs density is strongly increased from 108 to 1011 cm-2 at V/III ratios in the range of 15-35 (beam equivalent pressure values). InAs QD formations are not observed at temperatures of 500 °C and above. Growth experiments on (111) substrates show orientation dependent QD formation behaviour. A significant shape and size transition with elongated InAs quantum dots and dashes has been observed on (111) orientation and at higher Indium-growth rate of 0.3 ML/s. The 2D strain mapping derived from high-resolution TEM of InAs QDs embedded in silicon matrix confirmed semi-coherent and fully relaxed QDs embedded in defectfree silicon matrix. The strain relaxation is released by dislocation loops exclusively localized along the InAs/Si interfaces and partial dislocations with stacking faults inside the InAs clusters. The site controlled growth of GaAs/In0,15Ga0,85As/GaAs nanostructures has been demonstrated for the first time with 1 μm spacing and very low nominal deposition thicknesses, directly on pre-patterned Si without the use of SiO2 mask. Thin planar GaP layer was successfully grown through migration enhanced epitaxy (MEE) to initiate a planar GaP wetting layer at the polar/non-polar interface, which work as a virtual GaP substrate, for the GaP-MBE subsequently growth on the GaP-MEE layer with total thickness of 50 nm. The best root mean square (RMS) roughness value was as good as 1.3 nm. However, these results are highly encouraging for the realization of III-V optical devices on silicon for potential applications.
Resumo:
In this work investigation of the QDs formation and the fabrication of QD based semiconductor lasers for telecom applications are presented. InAs QDs grown on AlGaInAs lattice matched to InP substrates are used to fabricate lasers operating at 1.55 µm, which is the central wavelength for far distance data transmission. This wavelength is used due to its minimum attenuation in standard glass fibers. The incorporation of QDs in this material system is more complicated in comparison to InAs QDs in the GaAs system. Due to smaller lattice mismatch the formation of circular QDs, elongated QDs and quantum wires is possible. The influence of the different growth conditions, such as the growth temperature, beam equivalent pressure, amount of deposited material on the formation of the QDs is investigated. It was already demonstrated that the formation process of QDs can be changed by the arsenic species. The formation of more round shaped QDs was observed during the growth of QDs with As2, while for As4 dash-like QDs. In this work only As2 was used for the QD growth. Different growth parameters were investigated to optimize the optical properties, like photoluminescence linewidth, and to implement those QD ensembles into laser structures as active medium. By the implementation of those QDs into laser structures a full width at half maximum (FWHM) of 30 meV was achieved. Another part of the research includes the investigation of the influence of the layer design of lasers on its lasing properties. QD lasers were demonstrated with a modal gain of more than 10 cm-1 per QD layer. Another achievement is the large signal modulation with a maximum data rate of 15 Gbit/s. The implementation of optimized QDs in the laser structure allows to increase the modal gain up to 12 cm-1 per QD layer. A reduction of the waveguide layer thickness leads to a shorter transport time of the carriers into the active region and as a result a data rate up to 22 Gbit/s was achieved, which is so far the highest digital modulation rate obtained with any 1.55 µm QD laser. The implementation of etch stop layers into the laser structure provide the possibility to fabricate feedback gratings with well defined geometries for the realization of DFB lasers. These DFB lasers were fabricated by using a combination of dry and wet etching. Single mode operation at 1.55 µm with a high side mode suppression ratio of 50 dB was achieved.
Resumo:
Multilayers of PbTe quantum dots embedded in SiO2 were fabricated by alternate use of Pulsed Laser Deposition (PLD) and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. The morphological properties of the nanostructured material were studied by means of High Resolution Transmission Electron Microscopy (HRTEM), Grazing-Incidence Small-Angle X-ray scattering (GISAXS) and X-ray Reflectometry (XRR) techniques. A preliminary analysis of the GISAXS spectra provided information about the multilayer periodicity and its relationship to the size of the deposited PbTe nanoparticles. Finally multilayers were fabricated inside a Fabry-Perot cavity. The device was characterized by means of Scanning Electron Microscopy (SEM). Transmittance measurements show the device functionality in the infrared region. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Semiconductor magnetic quantum dots are very promising structures, with novel properties that find multiple applications in spintronic devices. EuTe is a wide gap semiconductor with NaCl structure, and strong magnetic moments S=7/2 at the half filled 4f(7) electronic levels. On the other hand, SnTe is a narrow gap semiconductor with the same crystal structure and 4% lattice mismatch with EuTe. In this work, we investigate the molecular beam epitaxial growth of EuTe on SnTe after the critical thickness for island formation is surpassed, as a previous step to the growth of organized magnetic quantum dots. The topology and strain state of EuTe islands were studied as a function of growth temperature and EuTe nominal layer thickness. Reflection high energy electron diffraction (RHEED) was used in-situ to monitor surface morphology and strain state. RHEED results were complemented and enriched with atomic force microscopy and grazing incidence X-ray diffraction measurements made at the XRD2 beamline of the Brazilian Synchrotron. EuTe islands of increasing height and diameter are obtained when the EuTe nominal thickness increases, with higher aspect ratio for the islands grown at lower temperatures. As the islands grow, a relaxation toward the EuTe bulk lattice parameter was observed. The relaxation process was partially reverted by the growth of the SnTe cap layer, vital to protect the EuTe islands from oxidation. A simple model is outlined to describe the distortions caused by the EuTe islands on the SnTe buffer and cap layers. The SnTe cap layers formed interesting plateau structures with easily controlled wall height, that could find applications as a template for future nanostructures growth. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate that nanomechanically stamped substrates can be used as templates to pattern and direct the self-assembly of epitaxial quantum structures such as quantum dots. Diamond probe tips are used to indent or stamp the surface of GaAs( 100) to create nanoscale volumes of dislocation-mediated deformation, which alter the growth surface strain. These strained sites act to bias nucleation, hence allowing for selective growth of InAs quantum dots. Patterns of quantum dots are observed to form above the underlying nanostamped template. The strain state of the patterned structures is characterized by micro-Raman spectroscopy. The potential of using nanoprobe tips as a quantum dot nanofabrication technology are discussed.
Resumo:
The polarization effects of in-plane electric fields and eccentricity on electronic and optical properties of semiconductor quantum rings (QRs) are discussed within the effective-mass approximation. As eccentric rings may appropriately describe real (grown or fabricated) QRs, their energy spectrum is studied. The interplay between applied electric fields and eccentricity is analysed, and their polarization effects are found to compensate for appropriate values of eccentricity and field intensity. The importance of applied fields in tailoring the properties of different nanoscale materials and structures is stressed.