924 resultados para Seismic Hazard


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use digital seismic reflection profiles within a 1° * 1° survey area on the Cocos Ridge (COCOS6N) to study the extent and timing of sedimentation and sediment redistribution on the Cocos Ridge. The survey was performed to understand how sediment focusing might affect paleoceanographic flux measurements in a region known for significant downslope transport. COCOS6N contains ODP Site 1241 to ground truth the seismic stratigraphy, and there is a seamount ridge along the base of the ridge that forms a basin (North Flank Basin) to trap sediments transported downslope. Using the Site 1241 seismic stratigraphy and densities extrapolated from wireline logging, we document mass accumulation rates (MARs) since 11.2 Ma. The average sediment thickness at COCOS6N is 196 m, ranging from outcropping basalt at the ridge crest to ~ 400 m at North Flank Basin depocenters. Despite significant sediment transport, the average sedimentation over the entire area is well correlated to sediment fluxes at Site 1241. A low mass accumulation rate (MAR) interval is associated with the 'Miocene carbonate crash' interval even though COCOS6N was at the equator at that time and relatively shallow. Highest MAR occurs within the late Miocene-early Pliocene biogenic bloom interval. Lowest average MAR is in the Pleistocene, as plate tectonic motions caused COCOS6N to leave the equatorial productivity zone. The Pliocene and Pleistocene also exhibit higher loss of sediment from the ridge crest and transport to North Flank Basin. Higher tidal energy on the ridge caused by tectonic movement toward the margin increased sediment focusing in the younger section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution, multichannel seismic data collected across the Great Bahama Bank margin and the adjacent Straits of Florida indicate that the deposition of Neogene-Quaternary strata in this transect are controlled by two sedimentation mechanisms: (1) west-dipping layers of the platform margin, which are a product of sea-level-controlled, platform-derived downslope sedimentation; and (2) east- or north-dipping drift deposits in the basinal areas, which are deposited by ocean currents. These two sediment systems are active simultaneously and interfinger at the toe-of-slope. The prograding system consists of sigmoidal clinoforms that advanced the margin some 25 km into the Straits of Florida. The foresets of the clinoforms are approximately 600 m high with variable slope angles that steepen significantly in the Pleistocene section. The seismic facies of the prograding clinoforms on the slope is characterized by dominant, partly chaotic, cut-and-fill geometries caused by submarine canyons that are oriented downslope. In the basin axis, seismic geometries and facies document deposition from and by currents. Most impressive is an 800-m-thick drift deposit at the confluence of the Santaren Channel and the Straits of Florida. This "Santaren Drift" is slightly asymmetric, thinning to the north. The drift displays a highly coherent seismic facies characterized by a continuous succession of reflections, indicating very regular sedimentation. Leg 166 of the Ocean Drilling Program (ODP) drilled a transect of five deep holes between 2 and 30 km from the modern platform margin and retrieved the sediments from both the slope and basin systems. The Neogene slope sediments consist of peri-platform oozes intercalated with turbidites, whereas the basinal drift deposits consist of more homogeneous, fine-grained carbonates that were deposited without major hiatuses by the Florida Current starting at approximately 12.4 Ma. Sea-level fluctuations, which controlled the carbonate production on Great Bahama Bank by repeated exposure of the platform top, controlled lithologic alternations and hiatuses in sedimentation across the transect. Both sedimentary systems are contained in 17 seismic sequences that were identified in the Neogene-Quaternary section. Seismic sequence boundaries were identified based on geometric unconformities beneath the Great Bahama Bank. All the sequence boundaries could be traced across the entire transect into the Straits of Florida. Biostratigraphic age determinations of seismic reflections indicate that the seismic reflections of sequence boundaries have chronostratigraphic significance across both depositional environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks. Especially in the Bay of Biscay, such physical habitats may only be observed within canyons, where they are created by both long-term turbiditic and contouritic processes. Frequent observations of sand ripples on the seabed indicate the presence of a steady, but enhanced bottom current of about 40 cm/s. The occurrence of oysters also coincides with the interface between the Eastern North Atlantic Water and the Mediterranean Outflow Water. A combination of this water mass mixing, internal tide generation and a strong primary surface productivity may generate an enhanced nutrient flux, which is funnelled through the canyon. When the ideal environmental conditions are met, up to 100 individuals per m² may be observed. These deep-water oysters require a vertical habitat, which is often incompatible with the requirements of other sessile organisms, and are only sparsely distributed along the continental margins. The discovery of these giant oyster banks illustrates the rich biodiversity of deep-sea canyons and their underestimation as true ecosystem hotspots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nearly continuous recovery of 0.5 km of generally fresh, layer 3 gabbroic rocks at Hole 735B, especially near the bottom of the section, presents scientists an unusual opportunity to study the detailed elastic properties of the lower oceanic crust. Extending compressional-wave and density shipboard measurements at room pressure, Vp and Vs were measured at pressures from 20 to 200 MPa using the pulse transmission method. All of the rocks exhibit significant increases in velocity with increasing pressure up to about 150 MPa, a feature attributed to the closing of microcrack porosity. Measured velocities reflect the mineralogical makeup and microstructures acquired during the tectonic history of Hole 735B. Most of the undeformed and unaltered gabbros are approximately 65:35 plagioclase/clinopyroxene rocks plus olivine or oxide minerals, and the observed densities and velocities are fully consistent with the Voigt-Reuss-Hill (VRH) averages of the component minerals and their proportions. Depending on their olivine content, the predominant olivine gabbros at 200 MPa have average Vp = 7.1 ± 0.2 km/s, Vs = 3.9 ± 0.1 km/s, and grain densities of 2.95 ± 0.5 g/cm3. The less abundant iron-titanium (Fe-Ti) oxide gabbros average Vp = 6.75 ± 0.15 km/s, Vs = 3.70 ± 0.1 km/s, and grain densities of 3.22 ± 0.05 g/cm3, reflecting the higher densities and lower velocities of oxide minerals compared to olivine. About 30% of the core is plastically deformed, and the densities and directionally averaged velocities of these shear-zone tectonites are generally consistent with those of the gabbros, their protoliths. Three sets of observations indicate that the shear-zone metagabbros are elastically anisotropic: (1) directional variations in Vp, both vertical and horizontal and with respect to foliation and lineation; (2) discrepancies among Vp values for the horizontal cores and the VRH averages of the component minerals and their mineral proportions, suggesting preferred crystallographic orientations of anisotropic minerals; and (3) variations of Vs of up to 7%, with polarization directions parallel and perpendicular to foliation. Optical inspection of thin sections of the same samples indicates that plagioclase feldspar, clinopyroxene, and amphibole typically display crystallographic-preferred orientations, and this, plus the elastic anisotropy of these minerals, suggests that preferred orientations are responsible for much of the observed anisotropy, particularly at high pressure. Alteration tends to be localized to brittle faults and brecciated zones, and typical alteration minerals are amphibole and secondary plagioclase, which do not significantly change the velocity-density relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two seismic surveys were carried out on the high-altitude glacier saddle, Colle Gnifetti, Monte Rosa, Italy/Switzerland. Explosive and vibroseismic sources were tested to explore the best way to generate seismic waves to deduce shallow and intermediate properties (<100 m) of firn and ice. The explosive source (SISSY) excites strong surface and diving waves, degrading data quality for processing; no englacial reflections besides the noisy bed reflector are visible. However, the strong diving waves are analyzed to derive the density distribution of the firn pack, yielding results similar to a nearby ice core. The vibrator source (ElViS), used in both P- and SH-wave modes, produces detectable laterally coherent reflections within the firn and ice column. We compare these with ice-core and radar data. The SH-wave data are particularly useful in providing detailed, high-resolution information on firn and ice stratigraphy. Our analyses demonstrate the potential of seismic methods to determine physical properties of firn and ice, particularly density and potentially also crystal-orientation fabric.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Deep Sea Drilling Project, in addition to providing valuable information on the history and processes of development of the ocean, has significantly contributed to our knowledge of the chemical and physical nature of the upper oceanic crust. Among the important physical properties of the crust are its seismic velocity and structure, the interpretation of which requires laboratory studies of seismic velocities in oceanic rocks.