983 resultados para Secretory ducts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) was originally described as a neuropeptide-metabolizing enzyme, highly expressed in the brain, kidneys and neuroendocrine tissue. EP24.15 lacks a typical signal peptide sequence for entry into the secretory pathway and is secreted by cells via an unconventional and unknown mechanism. In this study, we identified a novel calcium-dependent interaction between EP24.15 and calmodulin, which is important for the stimulated, but not constitutive, secretion of EP24.15. We demonstrated that, in vitro, EP24.15 and calmodulin physically interact only in the presence of Ca(2+), with an estimated K(d) value of 0.52 mu m. Confocal microscopy confirmed that EP24.15 colocalizes with calmodulin in the cytosol of resting HEK293 cells. This colocalization markedly increases when cells are treated with either the calcium ionophore A23187 or the protein kinase A activator forskolin. Overexpression of calmodulin in HEK293 cells is sufficient to greatly increase the A23187-stimulated secretion of EP24.15, which can be inhibited by the calmodulin inhibitor calmidazolium. The specific inhibition of protein kinase A with KT5720 reduces the A23187-stimulated secretion of EP24.15 and inhibits the synergistic effects of forskolin with A23187. Treatment with calmidazolium and KT5720 nearly abolishes the stimulatory effects of A23187 on EP24.15 secretion. Together, these data suggest that the interaction between EP24.15 and calmodulin is regulated within cells and is important for the stimulated secretion of EP24.15 from HEK293 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the levels of immunoglobulins in colostrum, milk and sera from two common variable immunodeficiency (CVID) mothers (M1 and M2), and in sera from their newborn infants. During pregnancy they continued intravenous immunoglobulin therapy (IVIG). Antibody levels from maternal and cord blood collected at delivery and colostrum and milk, collected on the 3rd and 7th post-partum days, respectively, were analyzed. Although cord/maternal blood ratios of total immunoglobulins and subclasses, as well as specific antibodies differed between M1 and M2, both showed good placental transfer of anti-protein and anti-polysaccharide antibodies, despite lower cord/maternal blood ratios in M2. Anti-Streptococcus pneumoniae antibody avidity indexes were similar between paired maternal and cord serum. Both mothers` colostrum and milk samples showed only traces of IgA, and IgM and IgG levels in colostrum were within normal range in M1, whereas M2 presented elevated IgG and low IgM levels, when compared with healthy mothers. The study of colostrum and milk activity showed that they strongly inhibited enteropathogenic Escherichia coli adhesion in vitro. CVID patients must be informed about the relevance of regular IVIG administration during pregnancy, not only for their own health but also for their immune immature offspring. Breast-feeding should be encouraged as colostra from these CVID patients strongly inhibited E. coli adhesion to human epithelial cells thus providing immunological protection plus nutritional and psychological benefits for the infant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat-labile toxins (LTs) have ADP-ribosylation activity and induce the secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains in different mammalian hosts. LTs also act as adjuvants following delivery via mucosal, parenteral, or transcutaneous routes. Previously we have shown that LT produced by human-derived ETEC strains encompass a group of 16 polymorphic variants, including the reference toxin (LT1 or hLT) produced by the H10407 strain and one variant that is found mainly among bacterial strains isolated from pigs (LT4 or pLT). Herein, we show that LT4 ( with six polymorphic sites in the A (K4R, K213E, and N238D) and B (S4T, A46E, and E102K) subunits) displays differential in vitro toxicity and in vivo adjuvant activities compared with LT1. One in vitro generated LT mutant (LTK4R), in which the lysine at position 4 of the A subunit was replaced by arginine, showed most of the LT4 features with an similar to 10-fold reduction of the cytotonic effects, ADP-ribosylation activity, and accumulation of intracellular cAMP in Y1 cells. Molecular dynamic studies of the A subunit showed that the K4R replacement reduces the N-terminal region flexibility and decreases the catalytic site crevice. Noticeably, LT4 showed a stronger Th1-biased adjuvant activity with regard to LT1, particularly concerning activation of cytotoxic CD8(+) T lymphocytes when delivered via the intranasal route. Our results further emphasize the relevance of LT polymorphism among human-derived ETEC strains that may impact both the pathogenicity of the bacterial strain and the use of these toxins as potential vaccine adjuvants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acanthamoeba species are frequently isolated from soil and water collections. In the environment, the organisms multiply as phagotrophic trophozoites and encyst under adverse conditions. Several species are known to infect man, causing keratitis and opportunistic diseases. The mechanisms underlying tissue damage and invasion by the amoebae are being elucidated and the involvement of secreted peptidases, particularly serine peptidases, has been demonstrated. Here, elastase activity was examined in Acanthamoeba-conditioned medium (ACM), making use of elastin-Congo red (ECR) and synthetic peptide p-nitroanilide substrates. ACM hydrolysed ECR over a broad pH range and optimally at a pH of 7.5 and above. Indicating the activity of serine and metallopeptidases, Congo red release was potently inhibited by PMSF, antipain, chymostatin and 1,10-phenanthroline, partially reduced by elastatinal and EDTA, and unaffected by 1,7-phenanthroline and E-64. Screening with synthetic substrates mainly showed the activity of serine peptidases. ACM efficiently hydrolysed Suc-Ala(2)-Pro-Leu-pNA and Suc-Ala(2)-Pro-Phe-pNA over a broad pH range (7.0-9.5) and was weakly active against Suc-Ala(3)-pNA, a substrate found to be optimally hydrolysed at a pH around 7.0. Following ammonium sulfate precipitation of ACM proteins and FPLC analysis, the majority of the ECR-splitting activity, characterised as serine peptidases, bound to CM-sepharose and co-eluted with part of the Suc-Ala(2)-Pro-Phe-pNA-hyd to lysing activity in a gradient of 0-0.6 M NaCl. In the corresponding FPLC fractions, serine peptidases resolving in the region of 70-130 kDa were detected in gelatin gels. Overall, the results demonstrate that trophozoites secrete elastases, and additionally suggest the high molecular weight serine peptidases as possible elastase candidates. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This population-based cross-sectional study of 403 rural settlers in Brazilian Amazonia revealed an overall rate of IgG seropositivity to Toxocara canis excretory-secretory larval antigen of 26.8% (95% confidence interval [CI], 22.5-31.4%). Multilevel logistic regression analysis identified current infection with hookworm (odds ratio [OR], 2.32; 95% CI, 1.11-4.86) and residence in the most recently occupied sectors of the settlement (OR, 1.81.; 95%CI, 1.3-2.52) as significant risk factors for Toxocara seropositivity; age > 14 years (OR, 0.46; 95% CI, 0.28-0.73) and the presence of cats in the household (OR, 0.57; 95% CI, 0.32-1.02) appeared to be protective. Two significant high-prevalence clusters were detected in the area, together comprising 38.9% of the seropositive subjects; households in the clusters had slightly lower socioeconomic status and were less likely to have cats as pets. The obstacles for controlling human toxocariasis in this and other tropical rural settings are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endurance exercise is known to enhance peripheral insulin sensitivity and reduce insulin secretion. However, it is unknown whether the latter effect is due to the reduction in plasma substrate availability or alterations in beta-cell secretory machinery. Here, we tested the hypothesis that endurance exercise reduces insulin secretion by altering the intracellular energy-sensitive AMP-activated kinase (AMPK) signaling pathway. Male Wistar rats were submitted to endurance protocol training one, three, or five times per week, over 8 weeks. After that, pancreatic islets were isolated, and glucose-induced insulin secretion (GIIS), glucose transporter 2 (GLUT2) protein content, total and phosphorylated calmodulin kinase kinase (CaMKII), and AMPK levels as well as peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1 alpha) and uncoupling protein 2 (UCP2) content were measured. After 8 weeks, chronic endurance exercise reduced GIIS in a dose-response manner proportionally to weekly exercise frequency. Contrariwise, increases in GLUT2 protein content, CaMKII and AMPK phosphorylation levels were observed. These alterations were accompanied by an increase in UCP2 content, probably mediated by an enhancement in PGC-1 alpha protein expression. In conclusion, chronic endurance exercise induces adaptations in beta-cells leading to a reduction in GIIS, probably by activating the AMPK signaling pathway. Journal of Endocrinology (2011) 208, 257-264

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the frequency of anti-Toxocara antibodies in sheep from Presidente Prudente, southeastern Brazil. Serum samples were obtained from 365 sheep of diverse breeds and different ages. Samples were collected at a slaughterhouse and at farms located in Presidente Prudente. Three groups of animal of different ages were evaluated according to age: Group I: between 1 and 6 months old; Group II: between 7 and 10 months old; and Group III: between 11 and 15 months old. An ELISA test was carried out to detect anti-Toxocara antibodies (IgG) using the excretory-secretory antigens of Toxocara canis (TES) larvae. In total, 183 out of 365 animals (50.1%) were positive for anti-Toxocara antibodies. The frequency of antibody detection was directly proportional to the age of the animals (p<0.0001). indicating a relationship between infection and aging. In Group III, there was a higher prevalence in females (p = 0.0041). The relevance of these animals to the epidemiology of toxocariasis in pets and human should be considered. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pentrophic membrane (PM) is an anatomical structure surrounding the food bolus in most insects. Rejecting the idea that PM has evolved from coating mucus to play the same protective role as it, novel functions were proposed and experimentally tested. The theoretical principles underlying the digestive enzyme recycling mechanism were described and used to develop an algorithm to calculate enzyme distributions along the midgut and to infer secretory and absorptive sites. The activity of a Spodoptera frugiperda microvillar aminopeptidase decreases by 50% if placed in the presence of midgut contents. S. frugiperda trypsin preparations placed into dialysis bags in stirred and unstirred media have activities of 210 and 160%, respectively, over the activities of samples in a test tube. The ectoperitrophic fluid (EF) present in the midgut caeca of Rhynchosciara americana may be collected. If the enzymes restricted to this fluid are assayed in the presence of PM contents (PMC) their activities decrease by at least 58%. The lack of PM caused by calcofluor feeding impairs growth due to an increase in the metabolic cost associated with the conversion of food into body mass. This probably results from an increase in digestive enzyme excretion and useless homeostatic attempt to reestablish destroyed midgut gradients. The experimental models support the view that PM enhances digestive efficiency by: (a) prevention of non-specific binding of undigested material onto cell Surface; (b) prevention of excretion by allowing enzyme recycling powered by an ectoperitrophic counterflux of fluid; (c) removal from inside PM of the oligomeric molecules that may inhibit the enzymes involved in initial digestion; (d) restriction of oligomer hydrolases to ectoperitrophic space (ECS) to avoid probable partial inhibition by non-dispersed undigested food. Finally,PM functions are discussed regarding insects feeding on any diet. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spodoptera frugiperda beta-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against beta-1,3-glucan (laminarin), but cannot hydrolyze yeast beta-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive beta-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of beta-1,3-glucanases and beta-glucan-binding protein supports the assumption that the beta-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived beta-1,3-glucanases by the loss of an extended N-terminal region and the beta-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both soluble (SfTre1) and membrane-bound (SfTre2) trehalases occur along the midgut of Spodoptera frugiperda larvae. Released SfTre2 was purified as a 67 kDa protein. Its K(m) (1.6 mM) and thermal stability (half life 10 min at 62 degrees C) are different from the previously isolated soluble trehalase (K(m) = 0.47 mM; 100% stable at 62 degrees C). Two cDNAs coding for S. frugiperda trehalases have been cloned using primers based on consensus sequences of trehalases and having as templates a cDNA library prepared from total polyA-containing RNA extracted from midguts. One cDNA codes for a trehalase that has a predicted transmembrane sequence and was defined as SfTre2. The other, after being cloned and expressed, results in a recombinant trehalase with a K(m) value and thermal stability like those of native soluble trehalase. This enzyme was defined as SfTre1 and, after it was used to generate antibodies, it was immunolocalized at the secretory vesicles and at the glycocalyx of columnar cells. Escherichia coli trehalase 3D structure and sequence alignment with SfTre1 support a proposal regarding the residue modulating the pKa value of the proton donor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling fluid`s contact with the productive zone of horizontal or complex wells can reduce well productivity by fluid invasion in the borehole wall. Salted drilling drill-in fluid containing polymers has often been applied in horizontal or complex petroleum wells in the poorly consolidated sandstone reservoirs of the Campos basin, Rio de Janeiro, Brazil. This fluid usually consists of natural polymers such as starch and xanthan gum, which are deposited as a filter cake on the wellbore wall during the drilling. Therefore, the identification of a lift-off mechanism failure, which can be detachment or blistering and pinholing, will enable formulation improvements. increasing the chances of success during filter cake removal in open hole operations. Likewise, knowledge of drill-in drilling fluid adsorption/desorption onto sand can help understand the filter cake-rock adhesion mechanism and consequently filter cake lift-off mechanism failures. The present study aimed to identify the lift-off failure mechanism for this type of fluid filter cake studying adsorption/desorption onto SiO(2) using solutions of natural polymers, lubricants, besides the fluid itself. Ellipsometry was employed to measure this process. The adsorption/desorption studies showed that the adsorbed layer of drilling fluid onto the walls of the rock pores is made up of clusters of polymers, linked by hydrogen bonds, which results in a force of lower cohesion compared to the electrostatic interaction between silica and polymers. Consequently, it was found that the most probable filter cake failure mechanism is rupture (blistering and pinholing), which results in the formation of ducts within the filter cake. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the structure of the pro; ducts obtained from the polymerization of aniline with ammonium persulfate in a citrate/phosphate buffer solution at pH 3 by resonance Raman, NMR, FTIR, and UV-vis-NIR spectroscopies. All the spectroscopic data showed that the major product presented segments that were formed by a 1,4-Michael reaction between aniline and p-benzoquinone monoimine, ruling out the formation of polyazane structure that has been recently proposed. The characterization of samples obtained at different stages of the reaction indicated that, as the reaction progressed, phenazine units were formed and 1,4-Michael-type adducts were hydrolyzed/oxidized to yield benzoquinone. Raman mapping data suggested that phenazine-like segments could be related to the formation of the microspheres morphology.