879 resultados para Seasonal Incidence
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
This study addresses three issues: spatial downscaling, calibration, and combination of seasonal predictions produced by different coupled ocean-atmosphere climate models. It examines the feasibility Of using a Bayesian procedure for producing combined, well-calibrated downscaled seasonal rainfall forecasts for two regions in South America and river flow forecasts for the Parana river in the south of Brazil and the Tocantins river in the north of Brazil. These forecasts are important for national electricity generation management and planning. A Bayesian procedure, referred to here as forecast assimilation, is used to combine and calibrate the rainfall predictions produced by three climate models. Forecast assimilation is able to improve the skill of 3-month lead November-December-January multi-model rainfall predictions over the two South American regions. Improvements are noted in forecast seasonal mean values and uncertainty estimates. River flow forecasts are less skilful than rainfall forecasts. This is partially because natural river flow is a derived quantity that is sensitive to hydrological as well as meteorological processes, and to human intervention in the form of reservoir management.
Resumo:
We report results from an investigation into consumer preferences for locally produced foods. Using a choice experiment we estimate willingness to pay for foods of a designated origin together with certification for organic and free of genetically modified (GM)ingredients. Our results indicate that there is a preference for locally produced food that is GM free, organic, and produced in the traditional season.
Resumo:
A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.
Resumo:
Direct observations from an array of current meter moorings across the Mozambique Channel in the south-west Indian Ocean are presented covering a period of more than 4 years. This allows an analysis of the volume transport through the channel, including the variability on interannual and seasonal time scales. The mean volume transport over the entire observational period is 16.7 Sv poleward. Seasonal variations have a magnitude of 4.1 Sv and can be explained from the variability in the wind field over the western part of the Indian Ocean. Interannual variability has a magnitude of 8.9 Sv and is large compared to the mean. This time scale of variability could be related to variability in the Indian Ocean Dipole (IOD), showing that it forms part of the variability in the ocean-climate system of the entire Indian Ocean. By modulating the strength of the South Equatorial Current, the weakening (strengthening) tropical gyre circulation during a period of positive (negative) IOD index leads to a weakened (strengthened) southward transport through the channel, with a time lag of about a year. The relatively strong interannual variability stresses the importance of long-term direct observations.
Resumo:
A time series of the observed transport through an array of moorings across the Mozambique Channel is compared with that of six model runs with ocean general circulation models. In the observations, the seasonal cycle cannot be distinguished from red noise, while this cycle is dominant in the transport of the numerical models. It is found, however, that the seasonal cycles of the observations and numerical models are similar in strength and phase. These cycles have an amplitude of 5 Sv and a maximum in September, and can be explained by the yearly variation of the wind forcing. The seasonal cycle in the models is dominant because the spectral density at other frequencies is underrepresented. Main deviations from the observations are found at depths shallower than 1500 m and in the 5/y–6/y frequency range. Nevertheless, the structure of eddies in the models is close to the observed eddy structure. The discrepancy is found to be related to the formation mechanism and the formation position of the eddies. In the observations, eddies are frequently formed from an overshooting current near the mooring section, as proposed by Ridderinkhof and de Ruijter (2003) and Harlander et al. (2009). This causes an alternation of events at the mooring section, varying between a strong southward current, and the formation and passing of an eddy. This results in a large variation of transport in the frequency range of 5/y–6/y. In the models, the eddies are formed further north and propagate through the section. No alternation similar to the observations is observed, resulting in a more constant transport.
Resumo:
The incidence-severity relationship for cashew gummosis, caused by Lasiodiplodia theobromae, was studied to determine the feasibility of using disease incidence to estimate indirectly disease severity in order to establish the potential damage caused by this disease in semiarid north-eastern Brazil. Epidemics were monitored in two cashew orchards, from 1995 to 1998 in an experimental field composed of 28 dwarf clones, and from 2000 to 2002 in a commercial orchard of a single clone. The two sites were located 10 km from each other. Logarithmic transformation achieved the best linear adjustment of incidence and severity data as determined by coefficients of determination for place, age and pooled data. A very high correlation between incidence and severity was found in both fields, with different disease pressures, different cashew genotypes, different ages and at several epidemic stages. Thus, the easily assessed gummosis incidence could be used to estimate gummosis severity levels.
Resumo:
A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.
Resumo:
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.
Resumo:
Many aspects of the conditions required to maximize the ewe's response to ram introduction in the late anoestrous season remain unclear. The aim of this research was to determine whether grazing space allowances could influence the efficacy of the ram effect. In August 1995, at Reading (latitude 51degrees27'N), following a 3-month isolation period from rams, two groups of nulliparous Mule ewes, aged 15 months, were introduced to four rains in a low (12 ewes/ha; treatment L, n = 124) or in a high stocking rate (84 ewes/ha; treatment H, n = 126). From the beginning of August until the end of August oestrous behaviour was recorded by daily checks of mating marks on ewes. Rams were removed and in October all ewes were scanned (day 50) for pregnancy. No significant differences were found in the parameters investigated. Eighty-two percent of the L and 75.4% of the H ewes exhibited oestrus, with a pronounced peak on day 23 following ram introduction and a compact concentration in the 21-25-day period. The oestrous synchronisation rate in this 5-day period was 69.4 and 68.3%, respectively for L and H. The mean interval from ram introduction to oestrus was 23.17+/-2.4 days in L and 23.0+/-2.2 days in the H group. Conception rates were 84.3 and 87.4% for L and H groups, respectively. These results suggest that the response of anoestrous ewes to the introduction of rams was not affected by grazing space allowances and that yearling Mule ewes respond well to the ram effect in the late anoestrus season. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We describe the nature of recent (50 year) rainfall variability in the summer rainfall zone, South Africa, and how variability is recognised and responded to on the ground by farmers. Using daily rainfall data and self-organising mapping (SOM) we identify 12 internally homogeneous rainfall regions displaying differing parameters of precipitation change. Three regions, characterised by changing onset and timing of rains, rainfall frequencies and intensities, in Limpopo, North West and KwaZulu Natal provinces, were selected to investigate farmer perceptions of, and responses to, rainfall parameter changes. Village and household level analyses demonstrate that the trends and variabilities in precipitation parameters differentiated by the SOM analysis were clearly recognised by people living in the areas in which they occurred. A range of specific coping and adaptation strategies are employed by farmers to respond to climate shifts, some generic across regions and some facilitated by specific local factors. The study has begun to understand the complexity of coping and adaptation, and the factors that influence the decisions that are taken.