820 resultados para Search-based algorithms
Resumo:
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.
Resumo:
Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.
Resumo:
OBJECTIVES: Darunavir was designed for activity against HIV resistant to other protease inhibitors (PIs). We assessed the efficacy, tolerability and risk factors for virological failure of darunavir for treatment-experienced patients seen in clinical practice. METHODS: We included all patients in the Swiss HIV Cohort Study starting darunavir after recording a viral load above 1000 HIV-1 RNA copies/mL given prior exposure to both PIs and nonnucleoside reverse transcriptase inhibitors. We followed these patients for up to 72 weeks, assessed virological failure using different loss of virological response algorithms and evaluated risk factors for virological failure using a Bayesian method to fit discrete Cox proportional hazard models. RESULTS: Among 130 treatment-experienced patients starting darunavir, the median age was 47 years, the median duration of HIV infection was 16 years, and 82% received mono or dual antiretroviral therapy before starting highly active antiretroviral therapy. During a median patient follow-up period of 45 weeks, 17% of patients stopped taking darunavir after a median exposure of 20 weeks. In patients followed beyond 48 weeks, the rate of virological failure at 48 weeks was at most 20%. Virological failure was more likely where patients had previously failed on both amprenavir and saquinavir and as the number of previously failed PI regimens increased. CONCLUSIONS: As a component of therapy for treatment-experienced patients, darunavir can achieve a similar efficacy and tolerability in clinical practice to that seen in clinical trials. Clinicians should consider whether a patient has failed on both amprenavir and saquinavir and the number of failed PI regimens before prescribing darunavir.
Resumo:
This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.
Resumo:
Context: Until now, the testosterone/epitestosterone (T/E) ratio is the main marker for detection of testosterone (T) misuse in athletes. As this marker can be influenced by a number of confounding factors, additional steroid profile parameters indicating T misuse can provide substantiating evidence of doping with endogenous steroids. The evaluation of a steroid profile is currently based upon population statistics. Since large inter-individual variations exist, a paradigm shift towards subject-based references is ongoing in doping analysis. Objective: Proposition of new biomarkers for the detection of testosterone in sports using extensive steroid profiling and an adaptive model based upon Bayesian inference. Subjects: 6 healthy male volunteers were administered with testosterone undecanoate. Population statistics were performed upon steroid profiles from 2014 male Caucasian athletes participating in official sport competition. Design: An extended search for new biomarkers in a comprehensive steroid profile combined with Bayesian inference techniques as used in the Athlete Biological Passport resulted in a selection of additional biomarkers that may improve detection of testosterone misuse in sports. Results: Apart from T/E, 4 other steroid ratios (6α-OH-androstenedione/16α-OH-dehydroepiandrostenedione, 4-OH-androstenedione/16α-OH-androstenedione, 7α-OH-testosterone/7β-OH-dehydroepiandrostenedione and dihydrotestosterone/5β-androstane-3α,17β-diol) were identified as sensitive urinary biomarkers for T misuse. These new biomarkers were rated according to relative response, parameter stability, detection time and discriminative power. Conclusion: Newly selected biomarkers were found suitable for individual referencing within the concept of the Athlete's Biological Passport. The parameters showed improved detection time and discriminative power compared to the T/E ratio. Such biomarkers can support the evidence of doping with small oral doses of testosterone.
Resumo:
In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.
Resumo:
Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadiene prices have fluctuated and significantly increased, leading state highway agencies to search for economically viable alternatives to butadiene based materials. This project reports the recent advances in polymerization techniques that have enabled the synthesis of elastomeric, thermoplastic, block-copolymers (BCPs) comprised of styrene and soybean oil, where the “B” block in SBS polymers is replaced with polymerized triglycerides derived from soybean oil. These new breeds of biopolymers have elastomeric properties comparable to well-established butadiene-based styrenic BCPs. In this report, two types of biopolymer formulations are evaluated for their ability to modify asphalt binder. Laboratory blends of asphalt modified with the biopolymers are tested for their rheological properties and performance grade. Blends of asphalt modified with the biopolymers are compared to blends of asphalt modified with two commonly used commercial polymers. The viscoelastic properties of the blends show that biopolymers improve the performance grade of the asphalt to a similar and even greater extent as the commercial SBS polymers. Results shown in this report indicate there is an excellent potential for the future of these biopolymers as economically and environmentally favorable alternatives to their petrochemically-derived analogs.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.
Resumo:
Multi-centre data repositories like the Alzheimer's Disease Neuroimaging Initiative (ADNI) offer a unique research platform, but pose questions concerning comparability of results when using a range of imaging protocols and data processing algorithms. The variability is mainly due to the non-quantitative character of the widely used structural T1-weighted magnetic resonance (MR) images. Although the stability of the main effect of Alzheimer's disease (AD) on brain structure across platforms and field strength has been addressed in previous studies using multi-site MR images, there are only sparse empirically-based recommendations for processing and analysis of pooled multi-centre structural MR data acquired at different magnetic field strengths (MFS). Aiming to minimise potential systematic bias when using ADNI data we investigate the specific contributions of spatial registration strategies and the impact of MFS on voxel-based morphometry in AD. We perform a whole-brain analysis within the framework of Statistical Parametric Mapping, testing for main effects of various diffeomorphic spatial registration strategies, of MFS and their interaction with disease status. Beyond the confirmation of medial temporal lobe volume loss in AD, we detect a significant impact of spatial registration strategy on estimation of AD related atrophy. Additionally, we report a significant effect of MFS on the assessment of brain anatomy (i) in the cerebellum, (ii) the precentral gyrus and (iii) the thalamus bilaterally, showing no interaction with the disease status. We provide empirical evidence in support of pooling data in multi-centre VBM studies irrespective of disease status or MFS.
Resumo:
The goal in highway construction and operation has shifted from method based specifications to specifications relating desired performance attributes to materials, mix designs, and construction methods. Shifting from method specifications to performance based specifications can work as an incentive or disincentive for the contractor to improve performance or extend pavement life. This literature search was directed at a review of existing portland cement concrete performance specification development, and the criteria that can effectively measure pavement performance. The criteria identified in the literature include concrete strength, slab thickness, air content, initial smoothness, water-cement ratio, unit weight, and slump. A description of each criterion, along with the advantages, disadvantages, and test methods for each are identified. Also included are the results from a survey that was sent out to various state, federal, and trade agencies. The responses indicated that 53% currently use or are developing a performance based specification program. Of the 47% of agencies that do not use a performance based specification program, over 34% indicated that they would consider a similar program. The most commonly measured characteristics include thickness, strength, smoothness, and air content. Lastly recommendations and conclusions are made regarding other factors that affect pavement performance and a proposed second phase of the research is suggested. The research team suggests that a regional expert task group be formed to identify performance levels and criteria. The results of that effort will guide the research team in the development of new or revised specifications.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Prenatal ultrasound can often reliably distinguish fetal anatomic anomalies, particularly in the hands of an experienced ultrasonographer. Given the large number of existing syndromes and the significant overlap in prenatal findings, antenatal differentiation for syndrome diagnosis is difficult. We constructed a hierarchic tree of 1140 sonographic markers and submarkers, organized per organ system. Subsequently, a database of prenatally diagnosable syndromes was built. An internet-based search engine was then designed to search the syndrome database based on a single or multiple sonographic markers. Future developments will include a database with magnetic resonance imaging findings as well as further refinements in the search engine to allow prioritization based on incidence of syndromes and markers.
Resumo:
Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.