968 resultados para Scotland Performs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Priestlaw and Cockburn Law intrusions are zoned granitoid plutons intruded into Lower Palaeozoic sediments at the margin of, and prior to closure of, the Iapetus Ocean. They vary from marginal basic rocks to more acid rocks towards their centres. The parental magmas to the plutons were derived from an isotopically depleted mantle modified by melts/fluids during subduction. Zonation in the plutons was caused by combined assimilation and fractional crystallisation (AFC), and rates of assimilation were low relative to rates of fractionation. A series of pyroxene-mica diorites in Priestlaw are however hybrids formed by simple mixing. Porphyrite-acid porphyrite dykes, associated with the plutons, represent chilled portions of the pluton magmas; more evolved quartz porphyry dykes represent crustal melts. Lamprophyre dykes have high LILE and LREE abundances and relative depletions of HFS elements, typical of subduction related ultra-potassic magmas. High Mg numbers, Ni and Cr contents and experimental constraints, imply near primary status for the least evolved lamprophyres. Their enrichments in incompatible elements, high La/Nb, La/Yb, Sr and low Nd indicate derivation from a previously metasomatised mantle source. Granitoid plutons and lavas in the northern Southern Uplands have high Nd and low Sr, whereas the younger plutons of the southern Southern Uplands have higher Sr, La/Yb and lower Nd, consistent with derivation from a more enriched source. No plutons however have remained as closed systems. Three magmatic suites are present in southern Scotland: (1) Midland Valley Suite (2) Northern Southern Uplands Suite and (3) Southern Southern Uplands Suite, consistent with previous models indicating northward underthrusting of English lithosphere below the southern Southern Uplands. Further underthrusting of decoupled lithospheric mantle is indicated by the presence of lamorophyres in the eastern Southern Uplands, and took place between 410 Ma and 400 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two aspects of gold mineralisation in the Caledonides of the British Isles have been investigated: gold-telluride mineralisation at Clogau Mine, North Wales; and placer gold mineralisation in the Southern Uplands, Scotland. The primary ore assemblage at Clogau Mine is pyrite, arsenopyrite, cobaltite, pyrrhotine, chalcopyrite, galena, tellurbismuth, tetradymite, altaite, hessite, native gold, wehrlite, hedleyite, native bismuth, bismuthunite and various sulphosalts. The generalised paragenesis is early Fe, Co, Cu, As and S species, and later minerals of Pb, Bi, Ag, Au, Te, Sb. Electron probe micro-analysis (EPMA) of complex telluride-sulphide intergrowths suggests that these intergrowths formed by co-crystallisation/replacement processes and not exsolution. Minor element chemical variation, in the sulphides and tellurides, indicates that antimony and cadmium are preferentially partitioned into telluride minerals. Mineral stability diagrams suggest that during gold deposition log bf aTe2 was between -7.9 and -9.7 and log bf aS2 between -12.4 and -13.8. Co-existing mineral assemblages indicate that the final stages of telluride mineralisation were between c. 250 - 275oC. It is suggested that the high-grade telluride ore shoot was the result of remobilisation of Au, Bi, Ag and Te from low grade mineralisation elsewhere within the vein system, and that gold deposition was brought about by destabilisation of gold chloride complexes by interaction with graphite, sulphides and tellurbismuth. Scanning electron microscopy of planer gold grains from the Southern Uplands, Scotland, indicates that detailed studies on the morphology of placer gold can be used to elucidate the history of gold in the placer environment. In total 18 different morphological characteristics were identified. These were divided on an empirical basis, using the relative degree of mechanical attrition, into proximal and distal characteristics. One morphological characteristic (a porous/spongy surface at high magnification) is considered to be chemical in origin and represent the growth of `new' gold in the placer environment. The geographical distribution of morphological characteristics has been examined and suggests that proximal placer gold is spatially associated with the Loch Doon, Cairsphairn and Fleet granitoids. Quantitative EPMA of the placer gold reveals two compositional populations of placer gold. Examination of the geographical distribution of fineness suggests a loose spatial association between granitoids and low fineness placer gold. Also identified was chemically heterogeneous placer gold. EPMA studies of these heterogeneities allowed estimation of annealing history limits, which suggest that the heterogeneities formed between 150 and 235oC. It is concluded, on the basis of relationships between morphology and composition, that there are two types of placer gold in the Southern Uplands: (i) placer gold which is directly inherited from a hypogene source probably spatially associated with granitoids; and (ii) placer gold that has formed during supergene processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Criffell-Dalbeattie pluton from SW Scotland is one of a suite of late Caledonian granitoids which are associated with extensive, contemporaneous and compositionally diverse suits of minor intrusions. The minor intrusive suite associated with the Criffell-Dalbeattie pluton is dominantly composed of a series of porphyritic microdiorites, microgranodiorites and microgranites known collectively as the porphyrite-porphyry series. This series can be divided into two groups, the porphyrites and the quartz porphyries, on the basis of petrography and geochemistry although there is some compositional overlap between the two. Compositionally, the porphyrites and quartz porphyries appear to correspond to the granodiorites and granites, respectively, which comprise the Criffell-Dalbeattie pluton, suggesting that the porphyrite-porphyry series of dykes represent magmas which were tapped from the evolving granitic magma chamber. The most mafic component of the minor intrusive suite is represented by calc-alkaline hornblende- and mica bearing lamprophyres. Geochemical studies, including fractional crystallisation, combine assimilation-fractional crystallisation (AFC) show that these are mafic, LILE and LREE enriched melts derived by low degrees of partial melting of a subduction-modified mantle source. It is suggested that the source of the lamprophyres is "Lake District" lithosphere, metasomatised by Lower Palaeozoic subduction, and thrust under the southern part of the Southern Uplands. AFC modelling using chemical and isotopic data further suggest that there is a close genetic link between the lamprophyres and the Criffell-Dalbeattie granitoids and that lamprophyres represent the mantle derived precursors of the Criffell-Dalbeattie granitoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Case law report - online

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise policy is increasingly favouring support for high growth firms (HGFs). However, this may be less effective in promoting new jobs and economic development in peripheral regions. This issue is addressed by a study of HGFs in Scotland. Scottish HGFs differ in a number of respects from the stylised facts in the literature. They create less employment than their counterparts elsewhere in the UK. Most have a significant physical presence outside of Scotland, thereby reducing their Scottish 'footprint' and domestic job creation. Scottish HGFs appear to have a high propensity to be acquired, increasing the susceptibility of the head office to closure. The evidence suggests that the tendency towards 'policy universalism' in the sphere of entrepreneurship policy is problematic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines how the governance of justice and internal security in Scotland could be affected by the outcome of the Scottish independence referendum in September 2014. The article argues that it is currently impossible to equate a specific result in the referendum with a given outcome for the governance of justice and internal security in Scotland. This is because of the complexities of the current arrangements in that policy area and the existence of several changes that presently affect them and are outside the control of the government and of the people of Scotland. This article also identifies an important paradox. In the policy domain of justice and internal security, a ‘no’ vote could, in a specific set of circumstances, actually lead to more changes than a victory of the ‘yes’ camp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fieldwork was supported by the Edinburgh Geological Society Clough & Mykura Fund, the Carnegie Undergraduate Scholarship and a stipend provided by the Irvine Bequest through the University of St Andrews to G.B.K. Laboratory work, and isotope and geochronology analyses were financed by NERC grant NE/G00398X/1 to A.R.P., A.E.F., D.J.Condon and A.P.M. Thanks go to T. Donnelly, J. Dougans, A. Calder, D. Herd, B. Pooley and A. Mackie for laboratory assistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments The investigation of the Bennachie Colony is part of a broader initiative called the Bennachie Landscape Project, a collaborative endeavour between the Bailies of Bennachie and the University of Aberdeen. To date, funding for the project has been generously provided by the Arts and Humanities Research Council (AHRC) in the form of a Connected Communities Grant (G. Noble PI) and more recently through a larger Development Grant (J. Oliver PI). The research that this paper is based on could not have been undertaken without the generous assistance of a large number of volunteers, university students and staff members. While it would be impossible to name everyone who has contributed, we would like to acknowledge the regular members of the “landscape group” whose infective enthusiasm for the project has provided a stimulating environment for learning and co-production. Particular thanks go to Jackie Cumberbirch, Barry Foster, Chris Foster, Angela Groat, David Irving, Alison Kennedy, Harry Leal, Ken Ledingham, Colin Miller, Iain Ralston, Colin Shepherd, Sue Taylor and Andrew Wainwright. Further assistance with fieldwork was provided by Ágústa Edwald, Patrycia Kupiec, Barbora Wouters, Óskar Sveinbjarnarson, members of Northlight Heritage and several cohorts worth of University of Aberdeen undergraduate and graduate students. We are indebted to the RCAHMS for assistance with plane table survey and to Óskar Sveinbjarnarson for help with mapping. Others have supported additional aspects of the Bennachie Landscape project or have provided specialist advice. Thanks go to Neil Curtis, Liz Curtis, Rowan Ellis, Marjory Harper, Siobhan Convery and the University of Aberdeen Special Collections staff. Access to undertake fieldwork was graciously provided by the Forestry Commission Scotland. Helpful comments on earlier drafts of this paper were provided by Barry and Chris Foster, Ken Ledingham, Collin Miller, Collin Shepherd, Sue Taylor, Andrew Wainwright and two anonymous reviewers.