956 resultados para Scientific satellites.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases׳ abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn׳s atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn׳s bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn׳s upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn׳s bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn׳s stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn׳s stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been widely accepted for some time that species-appropriate environmental enrichment is important for the welfare of research animals, but its impact on research data initially received little attention. This has now changed, as the use of enrichment as one element of routine husbandry has expanded. In addition to its use in the care of larger research animals, such as nonhuman primates, it is now being used to improve the environments of small research animals, such as rodents, which are used in significantly greater numbers and in a wide variety of studies. Concern has been expressed that enrichment negatively affects both experimental validity and reproducibility. However, when a concise definition of enrichment is used, with a sound understanding of the biology and behaviour of the animal as well as the research constraints, it becomes clear that the welfare of research animals can be enhanced through environmental enrichment without compromising their purpose. Indeed, it is shown that the converse is true: the provision of suitable enrichment enhances the well-being of the animal, thereby refining the animal model and improving the research data. Thus, the argument is made that both the validity and reproducibility of the research are enhanced when proper consideration is given to the research animal's living environment and the animal's opportunities to express species-typical behaviours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We process 20 years of SLR observations to GPS and GLONASS satellites using the reprocessed 3-day and 1-day microwave orbits provided by the Center for Orbit Determination in Europe (CODE) for the period 1994-2013. We study the dependency of the SLR residuals on the type, size, and a number of corner cubes in satellite laser reflector arrays (LRA). We show that the mean SLR residuals and the RMS of residuals depend on the coating of LRA and the block or type of GNSS satellites. The SLR mean residuals are also a function of the equipment used at SLR stations including detector types and detecting modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrary to the position taken by Kelly and Ó Gráda, a rich body of regional- to large-scale temperature reconstructions that span from the last millennium to almost the entire Holocene confirms the existence of several temperature depressions that occurred at different intensities and spatial ranges between c. 1350 and 1900, thus supporting the conception of a Little Ice Age. Nonetheless, the genuine uncertainties that continue to surround paleoclimatic study suggest that methodologies and findings are subject to further refinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time variable Earth’s gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth’s gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth’s gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003–2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the main scientific goals to be addressed by future in situ exploration of Saturn.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces the emic–etic debate in the scientific study of religion\s and provides a frame for the special issue’s six articles on the topic. Departing from the broader debate’s early history in the 1960s, this article contextualizes the emic–etic debate and locates its point of entry into the scientific study of religion\s in the 1980s. This article argues that in the course of the debate the insider–outsider and emic–etic complexes have become entangled. In order to facilitate an understanding of the debate, this article maintains that the emic–etic debate in the scientific study of religion\s touches upon three central dimensions (existential–political, methodologi- cal, and epistemological). In order to move toward a clearer methodological and epis- temological framework, this article furthermore proposes an iterative model that locates insider–outsider at the level of observers and emic–etic at the level of categories.