932 resultados para Scale of productions
Resumo:
Carbohydrate–protein bonds interrupt the rapid flow of leukocytes in the circulation by initiation of rolling and tethering at vessel walls. The cell surface carbohydrate ligands are glycosylated proteins like the mucin P-selectin glycoprotein ligand-1 (PSGL-1), which bind ubiquitously to the family of E-, P-, and L-selectin proteins in membranes of leukocytes and endothelium. The current view is that carbohydrate–selectin bonds dissociate a few times per second, and the unbinding rate increases weakly with force. However, such studies have provided little insight into how numerous hydrogen bonds, a Ca2+ metal ion bond, and other interactions contribute to the mechanical strength of these attachments. Decorating a force probe with very dilute ligands and controlling touch to achieve rare single-bond events, we have varied the unbinding rates of carbohydrate–selectin bonds by detachment with ramps of force/time from 10 to 100,000 pN/sec. Testing PSGL-1, its outer 19 aa (19FT), and sialyl LewisX (sLeX) against L-selectin in vitro on glass microspheres and in situ on neutrophils, we found that the unbinding rates followed the same dependence on force and increased by nearly 1,000-fold as rupture forces rose from a few to ≈200 pN. Plotted on a logarithmic scale of loading rate, the rupture forces reveal two prominent energy barriers along the unbinding pathway. Strengths above 75 pN arise from rapid detachment (<0.01 sec) impeded by an inner barrier that requires a Ca2+ bond between a single sLeX and the lectin domain. Strengths below 75 pN occur under slow detachment (>0.01 sec) impeded by the outer barrier, which appears to involve an array of weak (putatively hydrogen) bonds.
Resumo:
Human activities have greatly reduced the amount of the earth's area available to wild species. As the area they have left declines, so will their rates of speciation. This loss of speciation will occur for two reasons: species with larger geographical ranges speciate faster; and loss of area drives up extinction rates, thus reducing the number of species available for speciation. Theory predicts steady states in species diversity, and fossils suggest that these have typified life for most of the past 500 million years. Modern and fossil evidence indicates that, at the scale of the whole earth and its major biogeographical provinces, those steady states respond linearly, or nearly so, to available area. Hence, a loss of x% of area will produce a loss of about x% of species. Local samples of habitats merely echo the diversity available in the whole province of which they are a part. So, conservation tactics that rely on remnant patches to preserve diversity cannot succeed for long. Instead, diversity will decay to a depauperate steady state in two phases. The first will involve deterministic extinctions, reflecting the loss of all areas in which a species can ordinarily sustain its demographics. The second will be stochastic, reflecting accidents brought on by global warming, new diseases, and commingling the species of the separate bio-provinces. A new kind of conservation effort, reconciliation ecology, can avoid this decay. Reconciliation ecology discovers how to modify and diversify anthropogenic habitats so that they harbor a wide variety of species. It develops management techniques that allow humans to share their geographical range with wild species.
Resumo:
Observations of microwave background fluctuations can yield information not only about the geometry of the universe but potentially about the topology of the universe. If the universe is negatively curved, then the characteristic scale for the topology of the universe is the curvature radius. Thus, if we are seeing the effects of the geometry of the universe, we can hope to soon see signatures of the topology of the universe. The cleanest signature of the topology of the universe is written on the microwave sky: There should be thousands of pairs of matched circles. These circles can be used to determine the precise topology and volume of the universe. Because we see hundreds of slices through the fundamental domain of the universe, we can use the microwave observations to reconstruct the initial conditions of the entire universe on the scale of a few megaparsecs.
Resumo:
As a measure of dynamical structure, short-term fluctuations of coherence between 0.3 and 100 Hz in the electroencephalogram (EEG) of humans were studied from recordings made by chronic subdural macroelectrodes 5-10 mm apart, on temporal, frontal, and parietal lobes, and from intracranial probes deep in the temporal lobe, including the hippocampus, during sleep, alert, and seizure states. The time series of coherence between adjacent sites calculated every second or less often varies widely in stability over time; sometimes it is stable for half a minute or more. Within 2-min samples, coherence commonly fluctuates by a factor up to 2-3, in all bands, within the time scale of seconds to tens of seconds. The power spectrum of the time series of these fluctuations is broad, extending to 0.02 Hz or slower, and is weighted toward the slower frequencies; little power is faster than 0.5 Hz. Some records show conspicuous swings with a preferred duration of 5-15s, either irregularly or quasirhythmically with a broad peak around 0.1 Hz. Periodicity is not statistically significant in most records. In our sampling, we have not found a consistent difference between lobes of the brain, subdural and depth electrodes, or sleeping and waking states. Seizures generally raise the mean coherence in all frequencies and may reduce the fluctuations by a ceiling effect. The coherence time series of different bands is positively correlated (0.45 overall); significant nonindependence extends for at least two octaves. Coherence fluctuations are quite local; the time series of adjacent electrodes is correlated with that of the nearest neighbor pairs (10 mm) to a coefficient averaging approximately 0.4, falling to approximately 0.2 for neighbors-but-one (20 mm) and to < 0.1 for neighbors-but-two (30 mm). The evidence indicates fine structure in time and space, a dynamic and local determination of this measure of cooperativity. Widely separated frequencies tending to fluctuate together exclude independent oscillators as the general or usual basis of the EEG, although a few rhythms are well known under special conditions. Broad-band events may be the more usual generators. Loci only a few millimeters apart can fluctuate widely in seconds, either in parallel or independently. Scalp EEG coherence cannot be predicted from subdural or deep recordings, or vice versa, and intracortical microelectrodes show still greater coherence fluctuation in space and time. Widely used computations of chaos and dimensionality made upon data from scalp or even subdural or depth electrodes, even when reproducible in successive samples, cannot be considered representative of the brain or the given structure or brain state but only of the scale or view (receptive field) of the electrodes used. Relevant to the evolution of more complex brains, which is an outstanding fact of animal evolution, we believe that measures of cooperativity are likely to be among the dynamic features by which major evolutionary grades of brains differ.
Resumo:
The heavy fermions are a subset of the f-electron intermetallic compounds straddling the magnetic/nonmagnetic boundary. Their low-temperature properties are characterized by an electronic energy scale of order 1-10 K. Among the low-temperature ground states observed in heavy fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems.
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Resumo:
We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.
Resumo:
The Podzols of the world are divided into intra-zonal and zonal according to then location. Zonal Podzols are typical for boreal and taiga zone associated to climate conditions. Intra-zonal podzols are not necessarily limited by climate and are typical for mineral poor substrates. The Intra-zonal Podzols of the Brazilian Amazon cover important surfaces of the upper Amazon basin. Their formation is attributed to perched groundwater associated to organic matter and metals accumulations in reducing/acidic environments. Podzols have a great capacity of storing important amounts of soil organic carbon in deep thick spodic horizons (Bh), in soil depths ranging from 1.5 to 5m. Previous research concerning the soil carbon stock in Amazon soils have not taken into account the deep carbon stock (below 1 m soil depth) of Podzols. Given this, the main goal of this research was to quantify and to map the soil organic carbon stock in the region of Rio Negro basin, considering the carbon stored in the first soil meter as well as the carbon stored in deep soil horizons up to 3m. The amount of soil organic carbon stored in soils of Rio Negro basin was evaluated in different map scales, from local surveys, to the scale of the basin. High spatial and spectral resolution remote sensing images were necessary in order to map the soil types of the studied areas and to estimate the soil carbon stock in local and regional scale. Therefore, a multi-sensor analysis was applied with the aim of generating a series of biophysical attributes that can be indirectly related to lateral variation of soil types. The soil organic carbon stock was also estimated for the area of the Brazilian portion of the Rio Negro basin, based on geostatistical analysis (multiple regression kriging), remote sensing images and legacy data. We observed that Podzols store an average carbon stock of 18 kg C m-2 on the first soil meter. Similar amount was observed in adjacent soils (mainly Ferralsols and Acrisols) with an average carbon stock of 15 kg C m-2. However if we take into account a 3 m soil depth, the amount of carbon stored in Podzols is significantly higher with values ranging from 55 kg C m-2 to 82 kg C m-2, which is higher than the one stored in adjacent soils (18 kg C m-2 to 25 kg C m-2). Given this, the amount of carbon stored in deep soil horizons of Podzols should be considered as an important carbon reservoir, face a scenario of global climate change
Resumo:
Eating disorders present a significant physical and psychological problem with a prevalence rate of approximately six percent in the United States. Despite the extensive literature, identifying the consistent risk factors for predicting the course of treatment in eating disorders remains difficult. The present study explores the use of a standardized assessment, using the consistently validated Eating Disorder Inventory-III (EDI-3), in predicting treatment outcome. Specifically, the study investigates the particular scale of Maturity Fears (MF) on the EDI-3, hypothesizing that higher scores on the MF scale would predict lower rates of recovery and treatment completion. The participants were 52 eating disorder patients (19 AN, 18 BN, and 15 EDNOS), consecutively admitted to a five-month long intensive outpatient program (IOP). The participants completed an EDI-3 self-report at pre and post treatment, and their score on the MF scale did not show a significant predictive relationship to treatment completion or change in symptoms, as measured by the Eating Disorder Risk Composite (EDRC) scale on the EDI-3. This finding primarily suggests that maturity fears are not a significant predictive factor in an outpatient setting with adults, as compared to previous studies that found a relationship between maturity fears and treatment outcome, primarily with adolescent and inpatient populations.
Resumo:
Friction in hydrodynamic bearings are a major source of losses in car engines ([69]). The extreme loading conditions in those bearings lead to contact between the matching surfaces. In such conditions not only the overall geometry of the bearing is relevant, but also the small-scale topography of the surface determines the bearing performance. The possibility of shaping the surface of lubricated bearings down to the micrometer ([57]) opened the question of whether friction can be reduced by mean of micro-textures, with mixed results. This work focuses in the development of efficient numerical methods to solve thin film (lubrication) problems down to the roughness scale of measured surfaces. Due to the high velocities and the convergent-divergent geometries of hydrodynamic bearings, cavitation takes place. To treat cavitation in the lubrication problem the Elrod- Adams model is used, a mass-conserving model which has proven in careful numerical ([12]) and experimental ([119]) tests to be essential to obtain physically meaningful results. Another relevant aspect of the modeling is that the bearing inertial effects are considered, which is necessary to correctly simulate moving textures. As an application, the effects of micro-texturing the moving surface of the bearing were studied. Realistic values are assumed for the physical parameters defining the problems. Extensive fundamental studies were carried out in the hydrodynamic lubrication regime. Mesh-converged simulations considering the topography of real measured surfaces were also run, and the validity of the lubrication approximation was assessed for such rough surfaces.
Resumo:
This paper discusses how Bosnia and Herzegovina (BiH) can boost its stalled economy by generating jobs and increasing film-tourism, while simultaneously helping unite its culturally divided nation, by building a film/TV production industry looking to Northern Ireland's successful model following its similarly violent history. Evidence is presented substantiating that BiH has the infrastructure and workforce from which to grow a film/TV production industry, but it must be built through large-scale foreign productions like Northern Ireland did with Game of Thrones. Examining studies conducted by industry experts, strategies are offered for building a competitive and sustainable film/TV production industry in BiH. Results reveal more research is needed evidencing film/TV production can unify people from different ethno-religious/political groups in post-conflict societies.
Resumo:
Technological innovation in all areas has led to the appearance in recent years of new metallic and pearlescent materials, yet no exhaustive studies have been conducted to assess their colorimetric capabilities. The chromatic variability of these special-effect pigments may largely be due to the three-dimensional effect of their curved shapes and orientations when they are directionally or diffusely illuminated. Our study examines goniochromatic colors using the optimal colors (MacAdam limits) associated with normal colors (photometric scale of relative spectral reflectance from 0 to 1) under certain conventional illuminants and other light sources. From a database of 91 metallic and interference samples and using a multi-gonio-spectrophotometer, we analyzed samples with lightness values of more than 100 and others with lightness values of less than 100, but with higher chromaticities than optimal colors, which places them beyond the MacAdam limits. Our study thus demonstrates the existence of chromatic perceptions beyond the normal solid color associated with these materials and independent of the light source. The challenge for future research, therefore, is to replicate and render these color appearances in current and future color reproduction technologies for computer graphics.
Resumo:
We report on the quiescent state of the soft gamma repeater SGR 0501+4516 observed by XMM–Newton on 2009 August 30. The source exhibits an absorbed flux ∼75 times lower than that measured at the peak of the 2008 outburst, and a rather soft spectrum, with the same value of the blackbody temperature observed with ROSAT back in 1992. This new observation is put into the context of all existing X-ray data since its discovery in 2008 August, allowing us to complete the study of the timing and spectral evolution of the source from outburst until its quiescent state. The set of deep XMM–Newton observations performed during the few years time-scale of its outburst allows us to monitor the spectral characteristics of this magnetar as a function of its rotational period, and their evolution along these years. After the first ∼10 d, the initially hot and bright surface spot progressively cooled down during the decay. We discuss the behaviour of this magnetar in the context of its simulated secular evolution, inferring a plausible dipolar field at birth of 3 × 1014 G, and a current (magnetothermal) age of ∼10 kyr.
Resumo:
Gasoline coming from refinery fluid catalytic cracking (FCC) unit is a major contributor to the total commercial grade gasoline pool. The contents of the FCC gasoline are primarily paraffins, naphthenes, olefins, aromatics, and undesirables such as sulfur and sulfur containing compounds in low quantities. The proportions of these components in the FCC gasoline invariable determine its quality as well as the performance of the associated downstream units. The increasing demand for cleaner and lighter fuels significantly influences the need not only for novel processing technologies but also for alternative refinery and petrochemical feedstocks. Current and future clean gasoline requirements include increased isoparaffins contents, reduced olefin contents, reduced aromatics, reduced benzene, and reduced sulfur contents. The present study is aimed at investigating the effect of processing an unconventional refinery feedstock, composed of blend of vacuum gas oil (VGO) and low density polyethylene (LDPE) on FCC full range gasoline yields and compositional spectrum including its paraffins, isoparaffins, olefins, napthenes, and aromatics contents distribution within a range of operating variables of temperature (500–700 °C) and catalyst-feed oil ratio (CFR 5–10) using spent equilibrium FCC Y-zeolite based catalyst in a FCC pilot plant operated at the University of Alicante’s Research Institute of Chemical Process Engineering (RICPE). The coprocessing of the oil-polymer blend led to the production of gasoline with very similar yields and compositions as those obtained from the base oil, albeit, in some cases, the contribution of the feed polymer content as well as the processing variables on the gasoline compositional spectrum were appreciated. Carbon content analysis showed a higher fraction of the C9–C12 compounds at all catalyst rates employed and for both feedstocks. The gasoline’s paraffinicity, olefinicity, and degrees of branching of the paraffins and olefins were also affected in various degrees by the scale of operating severity. In the majority of the cases, the gasoline aromatics tended toward the decrease as the reactor temperature was increased. While the paraffins and iso-paraffins gasoline contents were relatively stable at around 5 % wt, the olefin contents on the other hand generally increased with increase in the FCC reactor temperature.
Resumo:
Background: There is strong evidence of the efficacy of family psychosocial interventions for schizophrenia, but evidence of the role played by the attitudes of relatives in the therapeutic process is lacking. Method: To study the effect of a family intervention on family attitudes and to analyse their mediating role in the therapeutic process 50 patients with schizophrenia and their key relatives undergoing a trial on the efficacy of a family psychosocial intervention were studied by means of the Affective Style Coding System, the Scale of Empathy, and the Relational Control Coding System. Specific statistical methods were used to determine the nature of the relationship of the relatives’ attitudes to the outcome of family intervention. Results: Family psychosocial intervention was associated with a reduction in relatives’ guilt induction and dominance and an improvement in empathy. Empathy and lack of dominance were identified as independent mediators of the effect of family psychosocial intervention. The change in empathy and dominance during the first 9 months of the intervention predicted the outcome in the following 15 months. Conclusion: Relatives’ empathy and lack of dominance are mediators of the beneficial effect of family psychosocial intervention on patient’s outcome.