934 resultados para SOIL CARBON


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric CO2 concentration ([CO2]) has increased over the last 250 years, mainly due to human activities. Of total anthropogenic emissions, almost 31% has been sequestered by the terrestrial biosphere. A considerable contribution to this sink comes from temperate and boreal forest ecosystems of the northern hemisphere, which contain a large amount of carbon (C) stored as biomass and soil organic matter. Several potential drivers for this forest C sequestration have been proposed, including increasing atmospheric [CO2], temperature, nitrogen (N) deposition and changes in management practices. However, it is not known which of these drivers are most important. The overall aim of this thesis project was to develop a simple ecosystem model which explicitly incorporates our best understanding of the mechanisms by which these drivers affect forest C storage, and to use this model to investigate the sensitivity of the forest ecosystem to these drivers. I firstly developed a version of the Generic Decomposition and Yield (G’DAY) model to explicitly investigate the mechanisms leading to forest C sequestration following N deposition. Specifically, I modified the G’DAY model to include advances in understanding of C allocation, canopy N uptake, and leaf trait relationships. I also incorporated a simple forest management practice subroutine. Secondly, I investigated the effect of CO2 fertilization on forest productivity with relation to the soil N availability feedback. I modified the model to allow it to simulate short-term responses of deciduous forests to environmental drivers, and applied it to data from a large-scale forest Free-Air CO2 Enrichment (FACE) experiment. Finally, I used the model to investigate the combined effects of recent observed changes in atmospheric [CO2], N deposition, and climate on a European forest stand. The model developed in my thesis project was an effective tool for analysis of effects of environmental drivers on forest ecosystem C storage. Key results from model simulations include: (i) N availability has a major role in forest ecosystem C sequestration; (ii) atmospheric N deposition is an important driver of N availability on short and long time-scales; (iii) rising temperature increases C storage by enhancing soil N availability and (iv) increasing [CO2] significantly affects forest growth and C storage only when N availability is not limiting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation the pyrolytic conversion of biomass into chemicals and fuels was investigated from the analytical point of view. The study was focused on the liquid (bio-oil) and solid (char) fractions obtainable from biomass pyrolysis. The drawbacks of Py-GC-MS described so far were partially solved by coupling different analytical configurations (Py-GC-MS, Py-GC-MIP-AED and off-line Py-SPE and Py-SPME-GC-MS with derivatization procedures). The application of different techniques allowed a satisfactory comparative analysis of pyrolysis products of different biomass and a high throughput screening on effect of 33 catalysts on biomass pyrolysis. As the results of the screening showed, the most interesting catalysts were those containing copper (able to reduce the high molecular weight fraction of bio-oil without large yield decrease) and H-ZSM-5 (able to entirely convert the bio-oil into “gasoline like” aromatic products). In order to establish the noxious compounds content of the liquid product, a clean-up step was included in the Py-SPE procedure. This allowed to investigate pollutants (PAHs) generation from pyrolysis and catalytic pyrolysis of biomass. In fact, bio-oil from non-catalytic pyrolysis of biomass showed a moderate PAHs content, while the use of H-ZSM-5 catalyst for bio-oil up-grading determined an astonishing high production of PAHs (if compared to what observed in alkanes cracking), indicating an important concern in the substitution fossil fuel with bio-oil derived from biomass. Moreover, the analytical procedures developed in this thesis were directly applied for the detailed study of the most useful process scheme and up-grading route to chemical intermediates (anhydrosugars), transportation fuels or commodity chemicals (aromatic hydrocarbons). In the applied study, poplar and microalgae biomass were investigated and overall GHGs balance of pyrolysis of agricultural residues in Ravenna province was performed. A special attention was put on the comparison of the effect of bio-char different use (fuel or as soil conditioner) on the soil health and GHGs emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fluxes and allocation pattern, and their relationship with the main environmental and physiological parameters, were studied in an apple orchard for one year (2010). I combined three widely used methods: eddy covariance, soil respiration and biometric measurements, and I applied a measurement protocol allowing a cross-check between C fluxes estimated using different methods. I attributed NPP components to standing biomass increment, detritus cycle and lateral export. The influence of environmental and physiological parameters on NEE, GPP and Reco was analyzed with a multiple regression model approach. I found that both NEP and GPP of the apple orchard were of similar magnitude to those of forests growing in similar climate conditions, while large differences occurred in the allocation pattern and in the fate of produced biomass. Apple production accounted for 49% of annual NPP, organic material (leaves, fine root litter, pruned wood and early fruit drop) contributing to detritus cycle was 46%, and only 5% went to standing biomass increment. The carbon use efficiency (CUE), with an annual average of 0.68 ± 0.10, was higher than the previously suggested constant values of 0.47-0.50. Light and leaf area index had the strongest influence on both NEE and GPP. On a diurnal basis, NEE and GPP reached their peak approximately at noon, while they appeared to be limited by high values of VPD and air temperature in the afternoon. The proposed models can be used to explain and simulate current relations between carbon fluxes and environmental parameters at daily and yearly time scale. On average, the annual NEP balanced the carbon annually exported with the harvested apples. These data support the hypothesis of a minimal or null impact of the apple orchard ecosystem on net C emission to the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the potential risks associated to the application of biochar in soil as well the stability of biochar were investigated. The study was focused on the potential risks arising from the occurrence of polycyclic aromatic hydrocarbons (PAHs) in biochar. An analytical method was developed for the determination of the 16 USEPA-PAHs in the original biochar and soil containing biochar. The method was successfully validated with a certified reference material for the soil matrix and compared with methods in use in other laboratories during a laboratory exercise within the EU-COST TD1107. The concentration of 16 USEPA-PAHs along with the 15 EU-PAHs, priority hazardous substances in food, was determined in a suite of currently available biochars for agricultural field applications derived from a variety of parent materials and pyrolysis conditions. Biochars analyzed contained the USEPA and some of the EU-PAHs at detectable levels ranging from 1.2 to 19 µg g-1. This method allowed investigating changes in PAH content and distribution in a four years study following biochar addition in soils in a vineyard (CNR-IBIMET). The results showed that biochar addition determined an increase of the amount of PAHs. However, the levels of PAHs in the soil remained within the maximum acceptable concentration for European countries. The vineyard soil performed by CNR-IBIMET was exploited to study the environmental stability of biochar and its impact on soil organic carbon. The stability of biochar was investigated by analytical pyrolysis (Py-GC-MS) and pyrolysis in the presence of hydrogen (HyPy). The findings showed that biochar amendment significantly influence soil stable carbon fraction concentration during the incubation period. Moreover, HyPy and Py-GC-MS were applied to biochars deriving from three different feedstock at two different pyrolysis temperatures. The results evidenced the influence of feedstock type and pyrolysis conditions on the degree of carbonisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Con riferimento alla realizzazione di tunnel per servizi interrati, l’incertezza che contraddistingue il quadro geologico, oltre che incidere sui costi, riveste un ruolo chiave nella progettazione preliminare. Sebbene un’approfondita caratterizzazione geotecnica e geologica del volume di terreno inerente l’opera di scavo sia generalmente parte integrante del progetto, non è comunque possibile eliminare del tutto tali incertezze per via dell’estensione del volume interessato oltre che per la disomogeneità che sempre contraddistingue il terreno. Generalmente, investigazioni in corso d’opera e interventi di stabilizzazione devono essere previsti per contenere i costi di perforazione ed ottimizzare la progettazione. Ad esempio, tra i metodi di esplorazione geotecnica figurano i tunnel pilota, i quali sono in grado di garantire un’ottimale caratterizzazione del quadro geotecnico del sottosuolo. Con riferimento agli interventi di stabilizzazione del terreno, adottabili laddove una perforazione tradizionale non consentirebbe il tunnelling, vi è un vasta gamma di scelta. Pertanto, da una prima analisi delle problematiche connesse al tunnelling emerge che la stabilizzazione delle facce di scavo riveste un’importanza e un risconto applicativo di prim’ordine. Questa tesi si inserisce all’interno di un progetto che promuove un’innovativa ed economica tecnica di stabilizzazione dei tunnel per suzione tenendo quindi conto dell’influenza della suzione sulla coesione non drenata.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays we live in densely populated regions and this leads to many environmental issues. Among all pollutants that human activities originate, metals are relevant because they can be potentially toxic for most of living beings. We studied the fate of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in a vineyard environment analysing samples of plant, wine and soil. Sites were chosen considering the type of wine produced, the type of cultivation (both organic and conventional agriculture) and the geographic location. We took vineyards that cultivate the same grape variety, the Trebbiano). We investigated 5 vineyards located in the Ravenna district (Italy): two on the Lamone Valley slopes, one in the area of river-bank deposits near Ravenna city, then a farm near Lugo and one near Bagnacavallo in interfluve regions. We carried out a very detailed characterization of soils in the sites, including the analysis of: pH, electric conductivity, texture, total carbonate and extimated content of dolomite, active carbonate, iron from ammonium oxalate, Iron Deficiency Chlorosis Index (IDCI), total nitrogen and organic carbon, available phosphorous, available potassium and Cation Exchange Capacity (CEC). Then we made the analysis of the bulk chemical composition and a DTPA extraction to determine the available fraction of elements in soils. All the sites have proper ground to cultivate, with already a good amount of nutrients, such as not needing strong fertilisations, but a vineyard on hills suffers from iron deficiency chlorosis due to the high level of active carbonate. We found some soils with much silica and little calcium oxide that confirm the marly sandstone substratum, while other soils have more calcium oxide and more aluminium oxide that confirm the argillaceous marlstone substratum. We found some critical situations, such as high concentrations of Chromium, especially in the farm near Lugo, and we noticed differences between organic vineyards and conventional ones: the conventional ones have a higher enrichment in soils of some metals (Copper and Zinc). Each metal accumulates differently in every single part of grapevines. We found differences between hill plants and lowland ones: behaviors of plants in metal accumulations seems to have patterns. Metals are more abundant in barks, then in leaves or sometimes in roots. Plants seem trying to remove excesses of metal storing them in bark. Two wines have excess of acetic acid and one conventional farm produces wine with content of Zinc over the Italian law limit. We already found evidence of high values relating them with uncontaminated environments, but more investigations are suggested to link those values to their anthropogenic supplies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rangelands store about 30% of the world’s carbon and support over 120 million pastoralists globally. Adjusting the management of remote alpine pastures bears a substantial climate change mitigation potential that can provide livelihood support for marginalized pastoralists through carbon payment. Landless pastoralists in Northern Pakistan seek higher income by cropping potatoes and peas over alpine pastures. However, tilling steep slopes without terracing exposes soil to erosion. Moreover, yields decline rapidly requiring increasing fertilizer inputs. Under these conditions, carbon payment could be a feasible option to compensate pastoralists for renouncing hazardous cropping while favoring pastoral activities. The study quantifies and compares C on cropped and grazed land. The hypothesis was that cropping on alpine pastures reduces former carbon storage. The study area located in the Naran valley of the Pakistani Himalayas receives an annual average of 819 mm of rain and 764 mm of snow. Average temperatures remain below 0°C from November to March while frost may occur all year round. A total of 72 soil core samples were collected discriminating land use (cropping, pasture), aspect (North, South), elevation (low 3000, middle 3100, and high 3200 m a.s.l.), and soil depth (shallow 0-10, deep 10-30 cm). Thirty six biomass samples were collected over the same independent variables (except for soil depth) using a 10x10x20 cm steal box inserted in the ground for each sample. Aboveground biomass and coarse roots were separated from the soil aggregate and oven-dried. Soil organic carbon (SOC) and biomass carbon (BC) were estimated through a potassium dichromate oxidation treatment. The samples were collected during the second week of October 2010 at the end of the grazing and cropping season and before the first snowfall. The data was statistically analyzed by means of a one-way analysis of variance. Results show that all variables taken separately have a significant effect on mean SOC [%]: crop/pasture 1.33/1.6, North/South 1.61/1.32, low/middle/high 1.09/1.62/1.68, shallow/deep 1.4/1.53. However, for BC, only land use has a significant effect with more than twice the amount of carbon in pastures [g m-2]: crop/pasture 127/318. These preliminary findings suggest that preventing the conversion of pastures into cropping fields in the Naran valley avoids an average loss of 12.2 t C ha-1 or 44.8 t CO2eq ha-1 representing a foreseeable compensation of 672 € ha-1 for the Naran landless pastoralists who would renounce cropping. The ongoing study shall provide a complete picture for carbon payment integrating key aspects such as the rate of cropping encroachment over pastures per year, the methane leakage from the system due to livestock enteric fermentation, the expected cropping income vs. livestock income and the transaction costs of implementing the mitigation project, certifying it, and verifying carbon credits. A net present value over an infinite time horizon for the mitigation scenario shall be estimated on an iterative simulation to consider weather and price uncertainties. The study will also provide an estimate of the minimum price of carbon at which pastoralists would consider engaging in the mitigation activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient planning of soil conservation measures requires, first, to understand the impact of soil erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon (SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of extensive ground truth, a digital elevation model and Landsat 7 imagery from two different seasons. Soil spectral reflectance readings were taken from soil samples in the laboratory and calibrated with results of SOC chemical analysis using regression tree modelling. The resulting model statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accuracy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which was developed to combine soil erosion incidence information and SOC content levels (for uniform land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, from well conserved land to hot spots of soil degradation. The approach helps to gain a better understanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spatially explicit manner. The results show distinctly lower SOC content levels on large parts of the test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On the other hand, there are strong indications that afforestations and fruit orchards established in the 1980s have been successful in conserving soil resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Northern peatlands are large reservoirs of soil organic carbon (C). Historically peatlands have served as a sink for C since decomposition is slowed primarily because of a raised water table (WT) that creates anoxic conditions. Climate models are predicting dramatic changes in temperature and precipitation patterns for the northern hemisphere that contain more than 90% of the world’s peatlands. It is uncertain whether climate change will shift northern peatlands from C sequestering systems to a major global C source within the next century because of alterations to peatland hydrology. This research investigated the effects of 80 years of hydrological manipulations on peatland C cycling in a poor fen peatland in northern Michigan. The construction of an earthen levee within the Seney National Wildlife Refuge in the 1930’s resulted in areas of raised and lowered WT position relative to an intermediate WT site that was unaltered by the levee. We established sites across the gradient of long-term WT manipulations to examine how decadal changes in WT position alter peatland C cycling. We quantified vegetation dynamics, peat substrate quality, and pore water chemistry in relation to trace gas C cycling in these manipulated areas as well as the intermediate site. Vegetation in both the raised and lowered WT treatments has different community structure, biomass, and productivity dynamics compared to the intermediate site. Peat substrate quality exhibited differences in chemical composition and lability across the WT treatments. Pore water dissolved organic carbon (DOC) concentrations increased with impoundment and WT drawdown. The raised WT treatment DOC has a low aromaticity and is a highly labile C source, whereas WT drawdown has increased DOC aromaticity. This study has demonstrated a subtle change of the long-term WT position in a northern peatland will induce a significant influence on ecosystem C cycling with implications for the fate of peatland C stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantifying belowground dynamics is critical to our understanding of plant and ecosystem function and belowground carbon cycling, yet currently available tools for complex belowground image analyses are insufficient. We introduce novel techniques combining digital image processing tools and geographic information systems (GIS) analysis to permit semi-automated analysis of complex root and soil dynamics. We illustrate methodologies with imagery from microcosms, minirhizotrons, and a rhizotron, in upland and peatland soils. We provide guidelines for correct image capture, a method that automatically stitches together numerous minirhizotron images into one seamless image, and image analysis using image segmentation and classification in SPRING or change analysis in ArcMap. These methods facilitate spatial and temporal root and soil interaction studies, providing a framework to expand a more comprehensive understanding of belowground dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil biota can be important drivers of plant community structure. Depending on the balance between antagonistic and mutualistic interactions, they can limit or promote the success of plant species. This is particularly important in the context of exotic plant invasions where soil biota can either increase the biotic resistance of habitats, or they can shift the balance between exotic and native plants towards the exotics and thereby greatly contribute to their dominance. Here, we explored the role of soil biota in the invasion success of exotic knotweed (Fallopia × bohemica), one of the world's most noxious invasive plants. We created artificial native plant communities that were experimentally invaded by knotweed, using a range of substrates where we manipulated different fractions of soil biota. We found that invasive knotweed benefited more from the overall presence of soil biota than any of the six native species. In particular the presence of the full natural soil biota strongly shifted the competitive balance in favor of knotweed. Soil biota promoted both regeneration and growth of the invader, which suggests that soil organisms may be important both in the early establishment of knotweed and possibly its later dominance of native communities. Addition of activated carbon to the soil made the advantage of knotweed disappear, which suggests that the mechanisms underlying the positive soil biota effects are chemically mediated. Our study demonstrates that soil organisms play a key role in the invasion success of exotic knotweed.