958 resultados para SINGLE-NUCLEOTIDE POLYMORPHISMS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Polymorphisms in the VDR gene were reported to be associated with variations in intrauterine and postnatal growth and with adult height, but also with other traits that are strongly correlated such as the BMI, insulin sensitivity, insulin secretion and hyperglycemia. Here, we assessed the impact of VDR polymorphisms on body height and its interactions with obesity- and glucose tolerance-related traits in obese children and adolescents. We studied 173 prepubertal (Tanner's stage 1) and 146 pubertal (Tanner's stages 2-5) obese children who were referred for a weight-loss program. Three single nucleotide polymorphisms were genotyped: rs1544410 (BsmI), rs7975232 (ApaI) and rs731236 (TaqI). BsmI and TaqI genotypes were significantly associated with height in pubertal children, but the associations did not reach statistical significance in prepubertal children. In stepwise regression analyses, the lean body mass, insulin secretion, BsmI or TaqI genotypes and the father's and the mother's height were independently and positively associated with height in pubertal children. These covariables accounted for 46% of the trait variance. The height of homozygous carriers of the minor allele of BsmI was 0.65 z-scores (4 cm) higher than the height of homozygous carriers of the major allele (P=.0006). Haplotype analyses confirmed the associations of the minor alleles of BsmI and TaqI with increased height. In conclusion, VDR genotypes were significantly associated with height in pubertal obese children. The associations were independent from the effects of confounding traits, such as the body fat mass, insulin secretion, insulin sensitivity and glucose tolerance. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the similar to 12-Mb genome of CAT-1, when compared with the reference S228c genome, contains similar to 36,000 homozygous and similar to 30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.
Resumo:
Background: Some single-nucleotide polymorphisms are associated with higher risk of colorectal cancer development and are suggested to explain part of the genetic contribution to Lynch syndrome. Aim: To evaluate the mutL homolog 1 (MLH1) I219V polymorphism in 124 unrelated South American individuals suspected of having Lynch syndrome, based on frequency, association with pathogenic MLH1 and mutS homolog 2 (MSH2) mutation and clinical features. Materials and Methods: DNA was obtained from peripheral blood and polymerase chain reaction (PCR) was performed, followed by direct sequencing. Results: The Val allelic of the I219V polymorphism was found in 51.61% (64/124) of the individuals, with an allelic frequency of 0.3. MLH1 or MHS2 pathogenic mutations were found in 32.81% (21/64) and in 23.33% (14/60) of Val-carriers and non-carriers, respectively. Conclusion: The Val-carrying genotype was frequent in the studied population; however, it does not appear to exert any modifier effect on MLH1 or MSH2 pathogenic mutations and the development of colorectal cancer.
Resumo:
Aim Matrix metalloproteinases (MMPs) play a key role in the tissue destruction characteristic of chronic periodontitis. The purpose of this study was to investigate the association of MMP and TIMP polymorphisms with chronic periodontitis in two populations. Material and Methods A total of 34 polymorphisms spanning 12 MMP and 2 TIMP genes were genotyped in 401 individuals from Brazil (99 cases with chronic periodontitis and 302 controls), and 274 individuals from the US (70 cases and 204 controls). Individuals were considered cases if presenting at least three teeth exhibiting sites of clinical attachment loss =5 mm in two different quadrants. Controls were characterized by absence of clinical attachment loss and no sites with probing depth >3 mm. MMP3 and TIMP1 mRNA expression was evaluated in healthy and diseased periodontal tissues. Results TIMP1 showed association with chronic periodontitis in the Brazilian population (for rs5906435, p = 0.0004), whereas MMP3 showed association in the US population (for rs679620, p = 0.0003; and rs650108, p = 0.002) and in the Brazilian population (for rs639752, p = 0.005). MMP3 and TIMP1 mRNA expression was significantly higher in diseased tissues when compared to control tissues. Conclusions Our results further support a role for variations in MMP3 in chronic periodontitis and report a novel association with TIMP1. These genes may be considered additional candidate genes for chronic periodontitis.
Resumo:
The non-classical human leukocyte antigen (HLA) class I genes present a very low rate of variation. So far, only 10 HLA-E alleles encoding three proteins have been described, but only two are frequently found in worldwide populations. Because of its historical background, Brazilians are very suitable for population genetic studies. Therefore, 104 bone marrow donors from Brazil were evaluated for HLA-E exons 14. Seven variation sites were found, including two known single nucleotide polymorphisms (SNPs) at positions +424 and +756 and five new SNPs at positions +170 (intron 1), +1294 (intron 3), +1625, +1645 and +1857 (exon 4). Haplotyping analysis did show eight haplotypes, three of them known as E*01:01:01, E*01:03:01 and E*01:03:02:01 and five HLA-E new alleles that carry the new variation sites. The HLA-E*01:01:01 allele was the predominant haplotype (62.50%), followed by E*01:03:02:01 (24.52%). Selective neutrality tests have disclosed an interesting pattern of selective pressures in which balancing selection is probably shaping allele frequency distributions at an SNP at exon 3 (codon 107), sequence diversity at exon 4 and the non-coding regions is facing significant purifying pressure. Even in an admixed population such as the Brazilian one, the HLA-E locus is very conserved, presenting few polymorphic SNPs in the coding region.
Resumo:
Background: Balancing the subject composition of case and control groups to create homogenous ancestries between each group is essential for medical association studies. Methods: We explored the applicability of single-tube 34-plex ancestry informative markers (AIM) single nucleotide polymorphisms (SNPs) to estimate the African Component of Ancestry (ACA) to design a future case-control association study of a Brazilian urban sample. Results: One hundred eighty individuals (107 case group; 73 control group) self-described as white, brown-intermediate or black were selected. The proportions of the relative contribution of a variable number of ancestral population components were similar between case and control groups. Moreover, the case and control groups demonstrated similar distributions for ACA <0.25 and >0.50 categories. Notably a high number of outlier values (23 samples) were observed among individuals with ACA <0.25. These individuals presented a high probability of Native American and East Asian ancestral components; however, no individuals originally giving these self-described ancestries were observed in this study. Conclusions: The strategy proposed for the assessment of ancestry and adjustment of case and control groups for an association study is an important step for the proper construction of the study, particularly when subjects are taken from a complex urban population. This can be achieved using a straight forward multiplexed AIM-SNPs assay of highly discriminatory ancestry markers.
Resumo:
Recent findings provide evidence of inflammasome critical role in the predisposition to autoimmune disorders. The involvement of inflammasome in the pathogenesis of systemic lupus erythematosus (SLE) has been hypothesized even if no significant association within inflammasome genes mutations or polymorphisms and lupus has been reported yet. We analyzed 14 single nucleotide polymorphisms (SNPs) within 7 inflammasome genes (NLRP1, NLRP3, NLRC4, AIM2, CARD8, CASP1, IL1B) in 144 patients affected by systemic lupus erythematosus and in 158 healthy controls from Southern Brazilian (state of Sao Paulo) with the aim of disclosing the possible role of inflammasome genes in the susceptibility of SLE. Our results demonstrated that NLRP1 rs2670660 SNP and the NLRP1 rs12150220-rs2670660 A-G haplotype were associated with SLE in our study population, and in particular with the development of nephritis, rash and arthritis. These findings are concordant with previously reported association of NLRP1 with vitiligo and type-1 diabetes underlining once more the involvement of NALP1 inflammasome in the pathogenesis of autoimmune disorders.
Resumo:
Introduction: The cytolysis mediated by granules is one of the most important effector functions of cytotoxic T lymphocytes and natural killer cells. Recently, three single nucleotide polymorphisms (SNPs) were identified at exons 2, 3, and 5 of the granzyme B gene, resulting in a haplotype in which three amino acids of mature protein Q48P88Y245 are changed to R48A88H245, which leads to loss of cytotoxic activity of the protein. In this study, we evaluated the frequency of these polymorphisms in Brazilian populations. Methods: We evaluated the frequency of these polymorphisms in Brazilian ethnic groups (white, Afro-Brazilian, and Asian) by sequencing these regions. Results: The allelic and genotypic frequencies of SNP 2364A/G at exon 2 in Afro-Brazilian individuals (42.3% and 17.3%) were significantly higher when compared with those in whites and Asians (p < 0.0001 and p = 0.0007, respectively). The polymorphisms 2933C/G and 4243C/T also were more frequent in Afro-Brazilians but without any significant difference regarding the other groups. The Afro-Brazilian group presented greater diversity of haplotypes, and the RAH haplotype seemed to be more frequent in this group (25%), followed by the whites (20.7%) and by the Asians (11.9%), similar to the frequency presented in the literature. Conclusions: There is a higher frequency of polymorphisms in Afro-Brazilians, and the RAH haplotype was more frequent in these individuals. We believe that further studies should aim to investigate the correlation of this haplotype with diseases related to immunity mediated by cytotoxic lymphocytes, and if this correlation is confirmed, novel treatment strategies might be elaborated.
Resumo:
Many of the developmental anomalies observed in cloned animals are related to foetal and placental overgrowth, a phenomenon known as the 'large offspring syndrome' (LOS) in ruminants. It has been hypothesized that the epigenetic control of imprinted genes, that is, genes that are expressed in a parental-specific manner, is at the root of LOS. Our recent research has focused on understanding epigenetic alterations to imprinted genes that are associated with assisted reproductive technologies (ART), such as early embryo in vitro culture (IVC) and somatic cell nuclear transfer (SCNT) in cattle. We have sought and identified single nucleotide polymorphisms in Bos indicus DNA useful for the analysis of parental-specific alleles and their respective transcripts in tissues from hybrid embryos derived by crossing Bos indicus and Bos taurus cattle. By analysing differentially methylated regions (DMRs) of imprinted genes SNRPN, H19 and the IGF2R in cattle, we demonstrated that there is a generalized hypomethylation of the imprinted allele and the biallelic expression of embryos produced by SCNT when compared to the methylation patterns observed in vivo (artificially inseminated). Together, these results indicate that imprinting marks are erased during the reprogramming of the somatic cell nucleus during early development, indicating that such epigenetic anomalies may play a key role in mortality and morbidity of cloned animals.
Resumo:
Aims: To evaluate the associations of excision repair cross complementing-group 1 (ERCC1) (DNA repair protein) (G19007A) polymorphism, methylation and immunohistochemical expression with epidemiological and clinicopathological factors and with overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Methods and results: The study group comprised 84 patients with HNSCC who underwent surgery and adjuvant radiotherapy without chemotherapy. Bivariate and multivariate analyses were used. The allele A genotype variant was observed in 79.8% of the samples, GG in 20.2%, GA in 28.6% and AA in 51.2%. Individuals aged more than 45 years had a higher prevalence of the allelic A variant and a high (83.3%) immunohistochemical expression of ERCC1 protein [odds ratio (OR) = 4.86, 95% confidence interval (CI): 1.2-19.7, P = 0.027], which was also high in patients with advanced stage (OR= 5.04, 95% CI: 1.07-23.7, P = 0.041). Methylated status was found in 51.2% of the samples, and was higher in patients who did not present distant metastasis (OR = 6.67, 95% CI: 1.40-33.33, P = 0.019) and in patients with advanced stage (OR = 5.04, 95% CI: 1.07-23.7, P = 0.041). At 2 and 5 years, overall survival was 55% and 36%, respectively (median = 30 months). Conclusion: Our findings may reflect a high rate of DNA repair due to frequent tissue injury during the lifetime of these individuals, and also more advanced disease presentation in this population with worse prognosis.
Resumo:
Abstract Background The etiology of idiopathic scoliosis remains unknown and different factors have been suggested as causal. Hereditary factors can also determine the etiology of the disease; however, the pattern of inheritance remains unknown. Autosomal dominant, X-linked and multifactorial patterns of inheritances have been reported. Other studies have suggested possible chromosome regions related to the etiology of idiopathic scoliosis. We report the genetic aspects of and investigate chromosome regions for adolescent idiopathic scoliosis in a Brazilian family. Methods Evaluation of 57 family members, distributed over 4 generations of a Brazilian family, with 9 carriers of adolescent idiopathic scoliosis. The proband presented a scoliotic curve of 75 degrees, as determined by the Cobb method. Genomic DNA from family members was genotyped. Results Locating a chromosome region linked to adolescent idiopathic scoliosis was not possible in the family studied. Conclusion While it was not possible to determine a chromosome region responsible for adolescent idiopathic scoliosis by investigation of genetic linkage using microsatellites markers during analysis of four generations of a Brazilian family with multiple affected members, analysis including other types of genomic variations, like single nucleotide polymorphisms (SNPs) could contribute to the continuity of this study.
Resumo:
Background Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the CYBA gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O2•- (-675 T → A in CYBA, unregistered) and in glutathione metabolism (-129 C → T in GCLC [rs17883901] and -65 T → C in GPX3 [rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients. Methods 401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m2 (n = 136) and were genotyped. Results No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying CYBA genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying GCLC genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (p = 0.0082). Logistic regression analysis identified the presence of at least one A allele of the CYBA SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, p = 0.0354) and the presence of at least one T allele of the GCLC rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, p = 0.0068). Conclusions The functional SNPs CYBA -675 T → A and GCLC rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.
Resumo:
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.
Resumo:
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.