900 resultados para SENSORY PHENOMENA
Resumo:
OBJECTIVE: To describe an alternative method for the treatment of non-responsive self-mutilation injuries in three dogs after carpal/tarsal arthrodesis. STUDY DESIGN: Case series ANIMALS: Two dogs with carpal injury and one dog with tarsal injury treated by arthrodesis METHODS: All dogs developed self-mutilation injuries due to licking and/or chewing of the toes within 21-52 days of surgery. Clinical signs did not resolve within one week after conservative treatment with wound debridement and protective bandages. Following general anaesthesia, a deep horseshoe-shaped skin incision, including the subdermal tissue, was performed proximal to the self-mutilation injury transecting the sensory cutaneous afferent nerves. The skin incision was closed with simple interrupted sutures. RESULTS: All wounds healed without complication. Self-mutilation resolved completely within 24 hours after surgery in all dogs. No recurrence was observed (5 months to 3 years). CONCLUSION: Non-selective cutaneous sensory neurectomy may lead to resolution of self-mutilation following arthrodesis in dogs. CLINICAL RELEVANCE: Failure of conservative treatment in self-mutilation injuries often leads to toe or limb amputation as a last resort. The technique described in this case series is a simple procedure that should be considered prior to amputation. The outcome of this procedure in dogs self-multilating due to neurological or behavioral disturbances unrelated to carpal or tarsal arthrodesis is not known.
Resumo:
The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.
Resumo:
BACKGROUND Providing the highest quality care for dying patients should be a core clinical proficiency and an integral part of comprehensive management, as fundamental as diagnosis and treatment. The aim of this study was to provide expert consensus on phenomena for identification and prediction of the last hours or days of a patient's life. This study is part of the OPCARE9 project, funded by the European Commission's Seventh Framework Programme. METHOD The phenomena associated with approaching death were generated using Delphi technique. The Delphi process was set up in three cycles to collate a set of useful and relevant phenomena that identify and predict the last hours and days of life. Each cycle included: (1) development of the questionnaire, (2) distribution of the Delphi questionnaire and (3) review and synthesis of findings. RESULTS The first Delphi cycle of 252 participants (health care professionals, volunteers, public) generated 194 different phenomena, perceptions and observations. In the second cycle, these phenomena were checked for their specific ability to diagnose the last hours/days of life. Fifty-eight phenomena achieved more than 80% expert consensus and were grouped into nine categories. In the third cycle, these 58 phenomena were ranked by a group of palliative care experts (78 professionals, including physicians, nurses, psycho-social-spiritual support; response rate 72%, see Table 1) in terms of clinical relevance to the prediction that a person will die within the next few hours/days. Twenty-one phenomena were determined to have "high relevance" by more than 50% of the experts. Based on these findings, the changes in the following categories (each consisting of up to three phenomena) were considered highly relevant to clinicians in identifying and predicting a patient's last hours/days of life: "breathing", "general deterioration", "consciousness/cognition", "skin", "intake of fluid, food, others", "emotional state" and "non-observations/expressed opinions/other". CONCLUSION Experts from different professional backgrounds identified a set of categories describing a structure within which clinical phenomena can be clinically assessed, in order to more accurately predict whether someone will die within the next days or hours. However, these phenomena need further specification for clinical use.
Resumo:
Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR) into hair cells from three-day-old Cdh23(+/+) and Cdh23(v2J/+) mice, but failed to detect GTTR uptake in Cdh23(v2J/v2J) hair cells. Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23(v2J/v2J) and BAPTA-treated hair cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG toxicity.
Resumo:
More than a century ago, Galton and Spearman suggested that there was a functional relationship between sensory discrimination ability and intelligence. Studies have since been able to confirm a close relationship between general discrimination ability (GDA) and IQ. The aim of the present study was to assess whether this strong relationship between GDA and IQ could be due to working memory (WM) demands of GDA tasks. A sample of 140 children (seventy 9-year-olds and seventy 11-year-olds) was studied. Results showed that there was a significant overlap between WM, GDA and fluid intelligence. Furthermore, results also revealed that WM could not explain the relationship between GDA and fluid intelligence as such, but that it acted as a bottleneck of information processing, limiting the influence of GDA on the prediction of fluid intelligence. Specifically, GDA's influence on the prediction of intelligence was only visible when WM capacity was above a certain level.
Resumo:
Present models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of new synapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia. As a first step in addressing this issue, we used confocal microscopy to examine sites of contact between sensory and motor neurons in naive animals. Our results revealed relatively few contacts between physiologically connected cells. In addition, the number of contact sites was proportional to the amplitude of the EPSP elicited in the follower motor neuron by direct stimulation of the sensory neuron. This is the first time such a correlation has been observed in the central nervous system. Serotonin is the neurotransmitter most closely examined for its role in modulating synaptic strength at the sensorimotor synapse. However, the structural relationship of serotonergic processes and sensorimotor synapses has never been examined. Surprisingly, serotonergic processes usually made contact with sensory and motor neurons at sites located relatively distant from the sensorimotor synapse. This result implies that heterosynaptic regulation is due to nondirected release of serotonin into the neuropil.
Resumo:
Exogenous recombinant human transforming growth factor beta-1 (TGF-beta1) induced long-term facilitation of Aplysia sensory-motor synapses. In addition, 5-HT-induced facilitation was blocked by application of a soluble fragment of the extracellular portion of the TGF-beta1 type II receptor (TbetaR-II), which presumably acted by scavenging an endogenous TGF-beta1-like molecule. Because TbetaR-II is essential for transmembrane signaling by TGF-beta, we sought to determine whether Aplysia tissues contained TbetaR-II and specifically, whether neurons expressed the receptor. Western blot analysis of Aplysia tissue extracts demonstrated the presence of a TbetaR-II-immunoreactive protein in several tissue types. The expression and distribution of TbetaR-II-immunoreactive proteins in the central nervous system was examined by immunohistochemistry to elucidate sites that may be responsive to TGF-beta1 and thus may play a role in synaptic plasticity. Sensory neurons in the ventral-caudal cluster of the pleural ganglion were immunoreactive for TbetaR-II, as well as many neurons in the pedal, abdominal, buccal, and cerebral ganglia. Sensory neurons cultured in isolation and cocultured sensory and motor neurons were also immunoreactive. TGF-beta1 affected the biophysical properties of cultured sensory neurons, inducing an increase of excitability that persisted for at least 48 hr. Furthermore, exposure to TGF-beta1 resulted in a reduction in the firing threshold of sensory neurons. These results provide further support for the hypothesis that TGF-beta1 plays a role in long-term synaptic plasticity in Aplysia.
Resumo:
The haloarchaeal phototaxis receptor sensory rhodopsin I (SRI) in complex with its transducer HtrI delivers an attractant signal from excitation with an orange photon and a repellent signal from a second near-UV photon excitation. Using a proteoliposome system with purified SRI in complex with its transducer HtrI, we identified by site-directed fluorescence labeling a site (Ser(155)) on SRI that is conformationally active in signal relay to HtrI. Using site-directed spin labeling of Ser(155)Cys with a nitroxide side chain, we detected a change in conformation following one-photon excitation such that the spin probe exhibits a splitting of the outer hyperfine extrema (2A'(zz)) significantly smaller than that of the electron paramagnetic resonance spectrum in the dark state. The dark conformations of five mutant complexes that do not discriminate between orange and near-UV excitation show shifts to lower or higher 2A'(zz) values correlated with the alterations in their motility behavior to one- and two-photon stimuli. These data are interpreted in terms of a model in which the dark complex is populated by two conformers in the wild type, one that inhibits the CheA kinase (A) and the other that activates it (R), shifted in the dark by mutations and shifted in the wild-type SRI-HtrI complex in opposite directions by one-photon and two-photon reactions.
Resumo:
Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pK(a) of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by approximately 1.5 units from that of the inwardly connected conformer. The pK(a) difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the one-photon excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connected retinylidene Schiff base like the repellent signaling forms of the SRI-HtrI complex, indicating the general applicability of macro conformational changes, which can be detected by the connectivity switch, to phototaxis signaling by sensory rhodopsin-transducer complexes.
Resumo:
Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (off-cell) spike activity, excitation of type I(e) (on-cell) spike activity, decreased spike activity in type III(i) inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type I(i) interneurons and pairs of type I(e) interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between I(e) and I(i) interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of I(e) and pairs of I(i) interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of I(e) and I(i) interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in I(e) and I(i) interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination.
Resumo:
Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.
Resumo:
BACKGROUND: Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). METHODS: The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. RESULTS: Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among these brain areas. CONCLUSION: These results suggest that an acute treatment of MPD produces electrophysiologically detectable alterations at the neuronal level, as well as observable, behavioral responses. The present study is the first to investigate the acute dose-response effects of MPD on behavior in terms of locomotor activity and in the brain involving the sensory inputs of VTA, NAc, and PFC neurons in intact, non-anesthetized, freely behaving rats previously implanted with permanent electrodes.
Resumo:
Light-induced electric signals in intact E. coli cells generated by heterologously expressed full-length and C-terminally truncated versions of Anabaena sensory rhodopsin (ASR) demonstrate that the charge movements within the membrane-embedded part of the molecule are stringently controlled by the cytoplasmic domain. In particular, truncation inverts the direction of proton movement during Schiff base deprotonation from outward to cytoplasmic. Truncation also alters faster charge movements that occur before Schiff base deprotonation. Asp(217) as previously shown by FTIR serves as a proton acceptor in the truncated ASR but not in the full-length version, and its mutation to Asn restores the natural outward direction of proton movement. Introduction of a potential negative charge (Ser(86) to Asp) on the cytoplasmic side favors a cytoplasmic direction of proton release from the Schiff base. In contrast, mutation of the counterion Asp(75) to Glu reverses the photocurrent to the outward direction in the truncated pigment, and in both truncated and full-length versions accelerates Schiff base deprotonation more than 10-fold. The communication between the cytoplasmic domain and the membrane-embedded photoactive site of ASR demonstrated here is likely to derive from the receptor's use of a cytoplasmic protein for signal transduction, as has been suggested previously from binding studies.