960 resultados para SEED BEETLE
Resumo:
Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.
Resumo:
Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, KM values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging. © The Royal Society of Chemistry and Owner Societies 2009.
Resumo:
The synergistic effect of lemon seed extract with tert-butylhydroquinone (TBHQ) in soybean oil subjected to thermoxidation by Rancimat was investigated, and the influence of these antioxidants on α-tocopherol degradation in thermoxidized soybean oil. Control, LSE (2,400 mg/kg Lemon Seed Extract), TBHQ (50 mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at time 0, 5, 10, 15 and 20 h intervals and analysed for oxidative stability and α-tocopherol content. LSE and Mixtures 1 and 2 showed the capacity of retarding lipid oxidation when added to soya oil and also contributed to α-tocopherol retention in oil heated at high temperatures. However, Mixtures 1 and 2 added to the oil presented a greater antioxidant power, consequently proving the antioxidants synergistic effect.
Resumo:
Magnolia ovata seeds have been reported as desiccation sensitive. In order to test if the drying rate would affect the assessment of storage behaviour of these seeds, the effect of different drying rates and storage times on the viability was tested. Seeds were dried over activated silica gel (fast drying) or salt solutions for different periods (slow drying) and stored at -20°C. Partial drying transiently increased the final germination and the germination speed index, but further drying resulted in reduction of these parameters. Drying rate affected the final germination and vigour. Seeds that were slow-dried to 0.10 g H 2O ̇ g -1 dw retained high viability when compared with seeds desiccated to the same water content level by the fast drying method, although their vigour was reduced. Only slow-dried seeds could be stored at -20°C for 90 d without reduction of viability. These data suggested that the storage behaviour of seeds of M. ovata seeds should be classified as intermediate.
Resumo:
In tropical conditions such as Brazil, depending on the local altitude, potatoes can be planted and harvested in every month of the year successively, which favors pest and disease incidence, especially aphids transmission viruses. Therefore, obtaining good yield depends on constant pest and disease control and quality potato seed acquisition. One of the main strategies to increase a healthier seed potato multiplication rate and production is the use of hydroponic systems, with or without substrates, in channels, pots or boxes. In 2005 and 2008, researches investigated several hydroponic systems with and without the use of substrates. In the hydroponic systems without substrate, the aeroponic system resulted in the highest multiplication rate, with 47 tubers plant-1 compared to NFT and DFT, 35 and 37 tubers plant-1, respectively. With the use of substrates, the pot system obtained better results, reaching 12 tubers plant-1, followed by the capillary system and boxes, with 8 and 7 tubers plant-1, respectively. Potato seed production was influenced by hydroponics systems. Among hydroponic systems with substrate, the pots were shown as the best option. However, higher yields were obtained in the hydroponics systems without substrate, with the aeroponic system that provided the best results.
Resumo:
Tillandsia gardneri is a bromeliad with ornamental value and a wide geographical distribution over Brazil. However, due to habitat loss and illegal overcollection in the wild it is included as a vulnerable species in the official list of endangered plants of the State of Rio Grande do Sul, Brazil. The development of a protocol for T. gardneri seed propagation in vitro may be useful for reintroducing plants in their natural habitats, and for germplasm conservation. A difficult problem encountered during the establishment of an in vitro culture is explants disinfection, especially when working with endangered species, from which explant availability is restricted. Thus, the establishment of a sterilization protocol is crucial for the initiation and success of a micropropagation system for T. gardneri. The objective of this study was to evaluate the effect of sodium hypochlorite concentration and exposure time in seed and seedling surface disinfection, tissue sensitivity and development. Sodium hypochlorite solutions (10 or 20%/5, 10 or 15 min; 25%/5 or 10 min; and 50%/5 min) were effective in eliminating seed superficial contaminants. There was no significant difference among the effective sterilization treatments in relation to seed germination (%), and seedling length and number of leaves, after 120 days in vitro. Also, no damage to seed and seedling tissues were observed. Surface sterilization of seedlings, for initiation of an in vitro culture, required higher concentrations of sodium hypochlorite (25%/15 min; 20 or 50%/5, 10 or 15 min; and 40%/5 and 10 min) for controlling fungal and yeast contamination, compared to seed sterilization. No significant differences among these treatments were found in relation to seedling length and number of leaves, after 60 days in vitro.
Resumo:
The effectiveness of seed dispersal by vertebrates has been analysed by examining both quantitative and qualitative components (Jordano & Schupp 2000, Schupp et al. 2010). While the quantitative component is relatively easily assessed in the field (e.g. visitation rate, number of fruits eaten per visit), the qualitative component (e.g. fate of dispersed seeds, seed treatment in the digestive system of the disperser) is rarely studied under natural conditions, because it is difficult to measure the effects on seeds once ingested by the dispersers (Cortes et al. 2009). © Cambridge University Press 2012.
Resumo:
Tropical rain forest conservation requires a good understanding of plant-animal interactions. Seed dispersal provides a means for plant seeds to escape competition and density-dependent seed predators and pathogens and to colonize new habitats. This makes the role and effectiveness of frugivorous species in the seed dispersal process an important topic. Northern pigtailed macaques (Macaca leonina) may be effective seed dispersers because they have a diverse diet and process seeds in several ways (swallowing, spitting out, or dropping them). To investigate the seed dispersal effectiveness of a habituated group of pigtailed macaques in Khao Yai National Park, Thailand, we examined seed dispersal quantity (number of fruit species eaten, proportion in the diet, number of feces containing seeds, and number of seeds processed) and quality (processing methods used, seed viability and germination success, habitat type and distance from parent tree for the deposited seeds, and dispersal patterns) via focal and scan sampling, seed collection, and germination tests. We found thousands of seeds per feces, including seeds up to 58 mm in length and from 88 fruit species. Importantly, the macaques dispersed seeds from primary to secondary forests, via swallowing, spitting, and dropping. Of 21 species, the effect of swallowing and spitting was positive for two species (i. e., processed seeds had a higher % germination and % viability than control seeds), neutral for 13 species (no difference in % germination or viability), and negative (processed seeds had lower % germination and viability) for five species. For the final species, the effect was neutral for spat-out seeds but negative for swallowed seeds. We conclude that macaques are effective seed dispersers in both quantitative and qualitative terms and that they are of potential importance for tropical rain forest regeneration. © 2013 Springer Science+Business Media New York.
Resumo:
The effect of seed addition on the microstructure and non-ohmic properties of the SnO2 + 1%CoO + 0.05%Nb2O5 ceramic-based system was analyzed. Two classes of seeds were prepared: 99% SnO2 + 1%CuO and 99% SnO2 + 1%CoO (mol%); both classes were added to the ceramic-based system in the amount of 1%, 5%, and 10%. The two systems containing 1% of seeds resulted in a larger grain size and a lower breakdown voltage. The addition of 1% copper seeds produces a breakdown voltage (V b) of ∼ 37 V and a leakage current (fic) of 29 μA. On the other hand, the addition of 1% cobalt seeds produced a breakdown voltage of 57 V and a leakage current of 70 μA. Both systems are of great technological interest for low voltage varistor applications, by means of appropriate strategies to reduce the leakage current. Using larger amounts of seeds was not effective since the values of breakdown voltage in both cases are close to a system without seeds. To our knowledge, there are no reports in the literature regarding the use of seeds in the SnO2 system for low voltage applications. A potential barrier model which illustrates the formation of oxygen species (O′2(ads), O′ads, and O″ads) at the expense of clusters near the interface between grains is proposed. © 2012 The American Ceramic Society.
Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores
Resumo:
Background: Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings: We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance: Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. © 2013 Bueno et al.
Resumo:
Cassia occidentalis is a bush from the Leguminosae family, subfamily Caesalpinoideae, and is a toxic plant of veterinary interest due to the occasional contamination of animal rations. This report describes the clinical and histopathological findings of an outbreak of C.occidentalis poisoning in horses. Twenty mares were poisoned after consuming ground corn contaminated with 8% of C.occidentalis seeds. Of the 20 animals affected, 12 died: 8 mares were found dead, 2 died 6h after the onset of clinical signs compatible with hepatic encephalopathy and the 2 other animals were subjected to euthanasia 12h after the onset of the clinical signs. The remaining 8 mares presented with mild depression and decreased appetite, but improved with treatment and no clinical sequelae were observed. In 6 animals that underwent a necropsy, an enhanced hepatic lobular pattern was noted and within the large intestine, a large number of seeds were consistently observed. Hepatocellular pericentrolobular necrosis and cerebral oedema were the main histological findings. In one mare, there was mild multifocal semimembranosus rhabdomyocytic necrosis and haemorrhage. Seeds collected from intestinal contents and sifted from the culpable feedstuff were planted. Examination of the leaves, flowers, fruits and seeds of the resultant plants identified C.occidentalis. Horses poisoned by C.occidentalis seeds demonstrate clinical signs associated with hepatoencephalopathy and frequently die suddenly. Lesions primarily involve the liver and secondarily, the central nervous system. Cassia occidentalis poisoning should be considered a differential diagnosis in horses with hepatoencephalopathy and special caution should be taken with horse rations to avoid contamination with seeds of this toxic plant. © 2012 EVJ Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
By combining galvanic displacement and electrodeposition techniques, an ordered Fe20Rh80 structure deposited onto brass was investigated by X-ray diffractometry, Mössbauer spectroscopy and magnetization measurements. Mössbauer and X-ray diffraction analyses suggest that the Fe-Rh alloy directly electrodeposited onto brass displays a nanocrystalline state while a similar alloy deposited onto Ag/brass shows a faced centered cubic-like structure, with dendrites-like features. These results directly indicate that the presence of Ag seed layer is responsible for the Fe-Rh alloy crystallization process. In addition, room temperature Mössbauer data indicate firstly paramagnetic states for two Fe-species. In the dominant Fe-species (major fraction of the Mössbauer spectra), Fe atoms are situated at a cubic environment and it can be attributed to the γ-Fe20Rh80 alloy based on their hyperfine parameters. In the second species, Fe atoms are placed in a non-local symmetry, which can be related to Fe atoms at the grain boundaries or/and Fe small clusters. These Fe-clusters are in superparamagnetic state at room temperature, but they may be ordered below 45 K, as suggested by magnetization data. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Local extinctions have cascading effects on ecosystem functions, yet little is known about the potential for the rapid evolutionary change of species in human-modified scenarios. We show that the functional extinction of large-gape seed dispersers in the Brazilian Atlantic forest is associated with the consistent reduction of the seed size of a keystone palm species. Among 22 palm populations, areas deprived of large avian frugivores for several decades present smaller seeds than nondefaunated forests, with negative consequences for palm regeneration. Coalescence and phenotypic selection models indicate that seed size reduction most likely occurred within the past 100 years, associated with human-driven fragmentation. The fast-paced defaunation of large vertebrates is most likely causing unprecedented changes in the evolutionary trajectories and community composition of tropical forests.
Resumo:
Overhunting has caused severe decline or local extinction in many large-bodied mammals with direct consequences on plant regeneration, yet little is known about indirect impacts of selective defaunation on commensal species. Cascading effects of species extinction across dependent species groups are likely to occur in coprophagous beetles, because these invertebrates rely on mammal dung for food and nesting material. Both mammals and dung beetles provide important ecosystem services and cascading effects are likely to lead to rapid functional losses. In this study, we described changes in dung beetle communities across a gradient of selective defaunation in continuous Brazilian Atlantic rain forest. We compared the dung beetle assemblages in seven sites with different mammalian biomass and composition. The reduction in the mammalian biomass had a major effect on dung beetle communities by (1) increasing dung beetle abundance with decreasing overall mammal, primate and large mammal biomasses, (2) decreasing dung beetle species richness with decreasing overall mammal biomass and (3) decreasing dung beetle size with decreasing large mammal biomass. Moreover, our study demonstrated the importance of the composition of mammal communities in structuring dung beetle communities. This study documented how selective changes in mammalian biomass and composition affect dung beetle species communities, which in turn may have cascading consequences for the ecosystem. Since most of tropical ecosystems are facing dramatic changes in mammalian composition, it is urgent to evaluate the functional losses associated with such co-extinctions. © 2013 Elsevier Ltd.