986 resultados para SAMPLE ERROR
Resumo:
IEECAS SKLLQG
Resumo:
Laser-induced breakdown spectroscopy (LIBS) as a powerful analytical technique is applied to analyze trace-elements in fresh plant samples. We investigate the LIBS spectra of fresh holly leaves and observe more than 430 lines emitted from 25 elements and molecules in the region 230-438 nm. The influence of laser wavelength on LIBS applied to semi-quantitative analysis of trace-element contents in plant samples is studied. The results show that the UV laser has lower relative standard deviations and better repeatability for semi-quantitative analysis of trace-element contents in plant samples. This work may be helpful for improving the quantitative analysis power of LIBS applied to plant samples.
Resumo:
An on-line sample introduction technique in capillary gas chromatograph (CGC) for the analysis of high-pressure gas-liquid mixtures has been designed and evaluated. A sample loop of 0.05 muL and a washing solvent loop of 0.5 muL are mounted on a 10-port switching valve, which serves as the injection valve. A capillary resistor was connected to the vent of sample loop in order to maintain the pressure of the sample. Both the sample and the washing solvent are transferred into the split-injection port through a narrow bore fused silica capillary inserted into the injection liner through a septum. The volume of the liner is used both as the pressure-release damper and evaporation chamber of the sample. On-line analysis of both reactants and resultants in ethylene olimer reaction mixture at 5 MPa was carried out, which demonstrated the applicability of the technique. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A minicapillary viscometer utilizing <0.5 ml of sample at a volume fraction of <0.1% is described. The calculated a/b of DPPC/DPPG multilamellar liposome was 1.14 as prolate ellipsoids and a/b of dioleoylpropyltrimethyl ammonium methylsulfate-DNA complex at a charge ratio of 4: 1 (+/-) was 3.7 as prolate ellipsoids or 4.9 as oblate ellipsoids. The deviation of shape from perfect sphere is thus expressed quantitatively in more than two significant figures. In these measurement, the necessary amount of DNA is <0.5 mg.
Resumo:
An apparatus including a rotary-type injector was designed for quantitative sample injection in capillary electrophoresis (CE), in which both pressurized flow and electroosmotic flow were used to drive the background electrolyte solution. A relative standard deviation of peak area of lower than 1% was achieved by using this apparatus. The effects of back-pressure regulator, restrictor, and applied voltage on separation efficiency and resolution were investigated. The utility of this apparatus in both micro-HPLC and pressurized capillary electrochromatography (pCEC) was also demonstrated.
Resumo:
Single-walled carbon nanohorn (SWCNH) was developed as new adsorbent for solid-phase extraction using 4-nitrophenol as representative. The unique exoteric structures and high surface area of SWCNH allow extracting a large amount of 4-nitrophenol over a short time. Highly sensitive determination of 4-nitrophenol was achieved by linear sweep voltammetry after only 120 s extraction. The calibration plot for 4-nitrophenol determination is linear in the range of 5.0 x 10(-8) M-1.0 x 10(-5) M under optimum conditions. The detection limit is 1.1 x 10(-8) M. The proposed method was successfully employed to determine 4-nitrophenol in lake water samples, and the recoveries of the spiked 4-nitrophenol were excellent (92-106%).
Resumo:
Capillary electrophoresis (CE) with Ru(bpy)(3)(2+) electrochemiluminescence. (ECL) detection system was established to the determination of contamination of banknotes with controlled drugs and a high efficiency on-column field-amplified sample stacking (FASS) technique was also optimized to increase the ECL intensity. The method was illustrated using heroin and cocaine, which are two typical and popular illicit drugs. Highest sample stacking was obtained when 0.01 mM acetic acid was chosen for sample dissolution with electrokinetical injection for 6 s at 17 kV. Under the optimized conditions: ECL detection at 1.2 V, separation voltage 10.0 kV, 20 mM phosphate-acetate (pH 7.2) as running buffer, 5 mM Ru(bpy)(3)(2+) with 50 mM phosphate-acetate (pH 7.2) in the detection cell, the standard curves were linear in the range of 7.50 x 10(-8) to 1.00 x 10(-5) M for heroin and 2.50 x 10(-7) to 1.00 x 10(-4) M for cocaine and detection limits of 50 nM for heroin and 60 nM for cocaine were achieved (S/N = 3), respectively. Relative standard derivations of the ECL intensity and the migration time were 3.50 and 0.51% for heroin and 4.44 and 0.12% for cocaine, respectively.The developed method was successfully applied to the determination of heroin and cocaine on illicit drug contaminated banknotes without any damage of the paper currency.
Resumo:
The determination of Nb and Ta in Nb-Ta minerals was accomplished by slurry nebulization inductively coupled plasma optical emission spectrometry (ICP-OES), using a clog-free V-groove ceramic nebulizer. Samples were first wet-ground to appropriate particle sizes with narrow size distribution and 90% of the particles in the slurry were smaller than 2.32 mu m in diameter. Subsamples were then dispersed in pH 9 aqueous solutions, and agitated in an ultrasonic bath for 15 min prior to analysis. Due to the lack of slurry standards matching well with the samples, calibration was simply carried out using aqueous solution standards. Results were compared with those obtained from a conventional fusion decomposition procedure and acid digestion procedures and a good agreement between the measured and referred values was obtained. The technique provided a good alternative for the rapid determination of Nb and/or Ta in their corresponding minerals.
Resumo:
A new electrochemiluminescence (ECL) microoptoprobe with simple structure. small sampling volume and high efficiency was developed. It was constructed by fixing the transparent gold mini-grid on the end surface of the optical fiber, and by surrounding the fiber with the counter- and reference electrodes to form a self-contained three-electrode system. The use of mini-grid electrode increased the surface area and collection efficiency. which resulted in higher ECL signal and better sensitivity. The counter electrode together with one end of the fiber formed a mini-vessel, which eliminated the need of additional container and allowed to perform ECL detection in a very small volume (about 10 mul). The microoptoprobe obtained was characterized with the Ru(bpy)(3)(2-)-tripropylamine system and was applied for the determination of oxalate and chlorpromazine (CPZ). Detection limits (S/N = 3) were 5 x 10(-7) and 1 x 10(-6) mol l(-1) for oxalate and CPZ. respectively. The linear range for oxalate and CPZ extended from 1 x 10(-6) to 1 x 10(-3) mol l(-1), and from 5 x 10(-6) to 5 x 10(-4) mol l(-1). respectively.
Resumo:
The process of deoxyribonucleio acid (DNA) sample preparation in scanning tunneling microscope (STM) and atomic force microscope (AFM) is reviewed. The main discussions are devoted to the methods, advantages or drawbacks and improvement of the DNA sample's immobilization and spreading.
Resumo:
The present paper reports some definite evidence for the significance of wavelength positioning accuracy in multicomponent analysis techniques for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). Using scanning spectrometers commercially available today, a large relative error, DELTA(A) may occur in the estimated analyte concentration, owing to wavelength positioning errors, unless a procedure for data processing can eliminate the problem of optical instability. The emphasis is on the effect of the positioning error (deltalambda) in a model scan, which is evaluated theoretically and determined experimentally. A quantitative relation between DELTA(A) and deltalambda, the peak distance, and the effective widths of the analysis and interfering lines is established under the assumption of Gaussian line profiles. The agreement between calculated and experimental DELTA(A) is also illustrated. The DELTA(A) originating from deltalambda is independent of the net analyte/interferent signal ratio; this contrasts with the situation for the positioning error (dlambda) in a sample scan, where DELTA(A) decreases with an increase in the ratio. Compared with dlambda, the effect of deltalambda is generally less significant.
Resumo:
The present paper deals with the evaluation of the relative error (DELTA(A)) in estimated analyte concentrations originating from the wavelength positioning error in a sample scan when multicomponent analysis (MCA) techniques are used for correcting line interferences in inductively coupled plasma atomic emission spectrometry. In the theoretical part, a quantitative relation of DELTA(A) with the extent of line overlap, bandwidth and the magnitude of the positioning error is developed under the assumption of Gaussian line profiles. The measurements of eleven samples covering various typical line interferences showed that the calculated DELTA(A) generally agrees well with the experimental one. An expression of the true detection limit associated with MCA techniques was thus formulated. With MCA techniques, the determination of the analyte and interferent concentrations depend on each other while with conventional correction techniques, such as the three-point method, the estimate of interfering signals is independent of the analyte signals. Therefore. a given positioning error results in a larger DELTA(A) and hence a higher true detection limit in the case of MCA techniques than that in the case of conventional correction methods. although the latter could be a reasonable approximation of the former when the peak distance expressed in the effective width of the interfering line is larger than 0.4. In the light of the effect of wavelength positioning errors, MCA techniques have no advantages over conventional correction methods unless the former can bring an essential reduction ot the positioning error.