963 resultados para Root-nodule Development
Resumo:
Freshwater turtle eggs are normally subjected to fluctuations in incubation temperature during natural incubation. Because of this, developing embryos may make physiological adjustments to growth and metabolism in response to incubation at different temperatures. I tested this hypothesis by incubating eggs of the Brisbane river turtle Emydura signata under four different temperature regimes, constant temperatures of 24 degrees C and 31 degrees C throughout incubation, and two swapped-temperature treatments where incubation temperature was changed approximately halfway through incubation. Incubation at 31 degrees C took 42 d, and incubation at 24 degrees C look 78 d, with intermediate incubation periods for the swapped-temperature treatments. Hatchling mass, hatchling size, and total oxygen consumed during development were similar for all incubation regimes. The pattern of oxygen consumption during the last phase of incubation as reflected by rate of increase of oxygen consumption, peak oxygen consumption, and fall in oxygen consumption before hatching was determined solely by the incubation temperature during the last phase of incubation; that is, incubation temperature during the first phase of incubation had no influence on these factors. Thus there is no evidence of temperature compensation in growth or development during embryonic development of E. signata eggs.
Resumo:
Iron deficiency is the most common nutritional deficiency in the world. Women of childbearing age are at particular risk of developing iron deficiency due to the iron losses associated with menstruation and childbirth. Women in less developed countries are often unable to obtain adequate dietary iron for their needs due to poor food supplies and inadequate bioavailable iron. In this situation, fortification and supplementation of the diet with extra iron is a reasonable approach to the prevention and treatment of iron deficiency. In Western countries however, food supply is unlikely to be an issue in the development of iron deficiency, yet studies have shown that many women in these countries receive inadequate dietary iron. Research has shown that the form of iron and the role of enhancers and inhibitors of iron absorption may be more important than total iron intake in determining iron status. Despite this, very little research attention has been paid to the role of diet in the prevention and treatment of iron deficiency. Dietary modification would appear to be a viable option for the prevention and treatment of iron deficiency in Western women, especially if the effects of enhancers/inhibitors of absorption are considered. While dietary modification has the potential to address at least part of the cause of iron deficiency in women of childbearing age, its efficacy is yet to be proven. (C) 1998 Elsevier Science Inc.
Resumo:
P2X purinoceptors have been suggested to participate in transduction of painful stimuli in nociceptive neurons. In the current experiments, ATP (1-10 mM), alpha,beta-methylene-ATP (10-30 mu M) and capsaicin (10 nM-1 mu M) were applied to neurons impaled with high resistance microelectrodes in rat dorsal root ganglia (L4 and L5) isolated in vitro together with the sciatic nerve and dorsal roots. The agonists were either bath applied or focally applied using a picospritzer. GABA (100 mu M) and 40-80 mM K+ solutions gave brisk responses when applied by either technique. Only three of 22 neurons with slowly conducting axons (C cells) showed evidence of P2X-purinoceptor-mediated responses. Only two of 13 cells which responded to capsaicin (putative nociceptors), and none of 29 cells with rapidly conducting axons (A cells), responded to the purinergic agonists. When acutely dissociated dorsal root ganglion cells were studied using patch-clamp techniques, all but four of 30 cells of all sizes responded with an inward current to either ATP or alpha,beta-methylene-ATP (both 100 mu M). Our data suggest that few sensory cell bodies in intact dorsal root ganglia express functional purinoceptors. (C) 1998 IBRO. Published by Elsevier Science Ltd.
Resumo:
Appropriate ways to monitor the availability and use of illicit drugs were examined. Four methods were tested concurrently: (1) a quantitative survey of injecting drug users, (2) a qualitative key informant study of illicit drug users and professionals working in the drug field, (3) examination of existing sources of survey, health and law enforcement data and (4) an ethnographic study of a high risk group of illicit drug users. The first three methods were recommended for inclusion in an ongoing national monitoring system, enabling the collection of both quantitative and qualitative data on a range of illicit drugs in a relatively brief, quick and cost-effective manner. A degree of convergent validity was also noted among these methods, improving the degree of confidence in drug trends. The importance of injecting drug users as a sentinel population of illicit drug users was highlighted, along with optimal methods for qualitative research.
Resumo:
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 degrees C, 26 degrees C, 28 degrees C and 31 degrees C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 degrees C and 28 degrees C had wider heads than hatchlings incubated at 24 degrees C and 31 degrees C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 degrees C than at 26 degrees C, 28 degrees C and 31 degrees C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass.
Resumo:
Primary sensory olfactory axons arise from the olfactory neuroepithelium that lines the nasal cavity and then project via the olfactory nerve into the olfactory bulb. The P-galactoside binding lectin, galectin-1,and its laminin ligand have been implicated in the growth of these axons along this pathway. In galectin-1 null mutant mice, a subpopulation of primary sensory olfactory axons fails to reach its targets in the olfactory bulb. In the present study we examined the spatiotemporal expression pattern of galectin-1 in normal mice in order to understand its role in the development of the olfactory nerve pathway. At E15.5, when olfactory axons have already contacted the olfactory bulb, galectin-1 was expressed in the cartilage and mesenchyme surrounding the nasal cavity but was absent from the olfactory neuroepithelium, nerve and bulb. Between E16.5 and birth galectin-1 began to be expressed by olfactory nerve ensheathing cells in the lamina propria of the neuroepithelium and nerve fibre layer. Galectin-1 was neither expressed by primary sensory neurons in the olfactory neuroepithelium nor by their axons in the olfactory nerve. Laminin, a galectin-1 ligand, also exhibited a similar expression pattern in the embryonic olfactory nerve pathway. Our results reveal that galectin-1 is dynamically expressed by glial elements within the nerve fibre layer during a discrete period in the developing olfactory nerve pathway. Previous studies have reported galectin-1 acts as a substrate adhesion molecule by cross-linking primary sensory olfactory neurons to laminin. Thus, the coordinate expression of galectin-1 and laminin in the embryonic nerve fibre layer suggests that these molecules support the adhesion and fasciculation of axons en route to their glomerular targets.
Resumo:
In vertebrates, excess all-trans retinoic acid (RA) applied during axis formation leads to the apparent truncation of anterior structures. In this study we sought to determine the type of defects caused by ectopic RA on the development of the ascidian Herdmania curvata. We demonstrate that H. curvata embryos cultured in the presence of RA develop into larvae whose trunks are shortened and superficially resemble those of early metamorphosing postlarvae. Despite RA-treated larvae lacking papillar structures they respond normally to natural cues that induce metamorphosis, indicating that chemosensory functionality previously mapped to the most anterior region of normal larvae is unaffected by RA. Excess RA applied during postlarval development leads to a graded loss of the juvenile pharynx, apparently by respecifying anterior endoderm to a more posterior fate. This structure is considered homologous to the gill slits of amphioxus. which are also lost upon RA treatment. This suggests that RA may have had a role in the development of the pharynx of the ancestral chordate and that this function has been maintained in ascidians and cephalochordates and lost in vertebrates.
Resumo:
Purpose, An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (r(j)) approaching the pore radii (r(p)) as well as approximation of the pore restriction form for r(j)/r(p) < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis. Methods, The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux. Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes. Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.
Resumo:
This note considers the value of surface response equations which can be used to calculate critical values for a range of unit root and cointegration tests popular in applied economic research.
Resumo:
There are, at least, two major questions concerning the molecular development of the olfactory nerve pathway. First, what are the molecular cues responsible for guiding axons from the nasal cavity to the olfactory bulb? Second, what is the molecular basis of axon targeting to specific glomeruli once axons reach the olfactory bulb? Studies in the primary olfactory pathway have focused on the role of the extracellular matrix and ensheathing cells in establishing an initial substrate for growth of pioneer axons between the periphery and brain. The primary axons also express a multitude of cell adhesion molecules that regulate fasciculation of axons and hence may play a role in fascicle formation in the olfactory nerve. Although the olfactory neuroepithelium principally consists of a morphologically homogeneous class of primary olfactory neurons, there are numerous subpopulations of olfactory neurons expressing chemically distinct phenotypes. In particular, numerous subpopulations have been characterized by expression of unique carbohydrate residues and olfactory receptor proteins. Some of these molecules have recently been implicated in axon guidance and targeting to specific glomeruli.
Resumo:
Composite adsorbents of carbon and alumina intercalated montmorillonite were prepared and characterized by adsorption of N-2 and O-2 at various temperatures. The effects of pyrolysis, temperature, heating rate, subsequent degassing, and doping of cations and anions were investigated. The adsorption capacities of the composite adsorbents developed at higher temperatures (0 and -79 degrees C) are found to be larger than those of normal alumina pillared clays. The experimental results showed that the framework of these adsorbents is made of alumina particles and clay sheets while the pyrolyzed carbon distributes in the space of interlayers and interpillars. The pores between the carbon particles, clay sheets, and alumina pillars are very narrow with very strong adsorption forces, leading to enhanced adsorption capacities at 0 and -79 degrees C. The composite adsorbents exhibit features similar to those of carbonaceous adsorbents. Their pore structures, adsorption capacities, and selectivities to oxygen can be tailored by a controlled degassing procedure. Meanwhile, ions can be doped into the adsorbents to modify their adsorption properties, as usually observed for oxide adsorbents like zeolite and pillared clays. Such flexibility in pore structure tailoring is a potential advantage of the composite adsorbents developed for their adsorption and separation applications. (C) 1999 Academic Press.
Resumo:
This study describes a coding system developed to operationalize the sociolinguistic strategies proposed by communication accommodation theory (CAT) in an academic context. Fifty interactions between two students (of Australian or Chinese ethnic background) or a student and faculty member were videotaped. A turn- and episode-based coding system was developed, focusing on verbal and nonverbal behavior. The development of this system is described in detail, before results are presented. Results indicated that status was the main influence on choice of strategies, particularly the extent and type of discourse management and interpersonal control. Participants' sew and ethnicity also played a role: Male participants made more use of interpretability (largely questions), whereas female participants used discourse management to develop a shared perspective. The results make clear that there is no automatic correspondence between behaviors and the strategies they constitute, and they point to the appropriateness of conceptualizing behavior and strategies separately in CAT.
Resumo:
Poor root development due to constraining soil conditions could be an important factor influencing health of urban trees. Therefore, there is a need for efficient techniques to analyze the spatial distribution of tree roots. An analytical procedure for describing tree rooting patterns from X-ray computed tomography (CT) data is described and illustrated. Large irregularly shaped specimens of undisturbed sandy soil were sampled from Various positions around the base of trees using field impregnation with epoxy resin, to stabilize the cohesionless soil. Cores approximately 200 mm in diameter by 500 mm in height were extracted from these specimens. These large core samples were scanned with a medical X-ray CT device, and contiguous images of soil slices (2 mm thick) were thus produced. X-ray CT images are regarded as regularly-spaced sections through the soil although they are not actual 2D sections but matrices of voxels similar to 0.5 mm x 0.5 mm x 2 mm. The images were used to generate the equivalent of horizontal root contact maps from which three-dimensional objects, assumed to be roots, were reconstructed. The resulting connected objects were used to derive indices of the spatial organization of roots, namely: root length distribution, root length density, root growth angle distribution, root spatial distribution, and branching intensity. The successive steps of the method, from sampling to generation of indices of tree root organization, are illustrated through a case study examining rooting patterns of valuable urban trees. (C) 1999 Elsevier Science B.V. All rights reserved.