978 resultados para River micro-basin
Resumo:
The quantitative knowledge of hydrological parameters (rainfall and flow) and their spatial and temporal variability on the regions or basins should be understood as essential to the efficient planning and management of water resources. Because the Ivinhema Basin, located in the state of Mato Grosso do Sul, Brazil, represents an important inductor on the region agricultural development, characterized as a major producer of grains and meat, it was used to characterize the hydrological study. Knowing the rainfall, flow and drainage area of each of the studied affluent, it was calculated the proportion of contribution of the affluent. To that end, it was proposed the concepts of potential and real contributions, aiming to identify the proportion of contribution of each of the affluent to the formation of the flow in the Ivinhema Basin. The results revealed that: the highest rainfall in the Ivinhema Basin occurred in the headwater regions; the mean specific flow of long duration reduces from the headwater to the mouth of Ivinhema Basin; the Sub-basin of Dorado's River has the highest potential and real contribution for the formation of the Ivinhema Basin flow; and the drainage areas of the affluent Dourados and Vacaria contribute with 53% flow of the basin.
Resumo:
This study aimed to apply mathematical models to the growth of Nile tilapia (Oreochromis niloticus) reared in net cages in the lower São Francisco basin and choose the model(s) that best represents the conditions of rearing for the region. Nonlinear models of Brody, Bertalanffy, Logistic, Gompertz, and Richards were tested. The models were adjusted to the series of weight for age according to the methods of Gauss, Newton, Gradiente and Marquardt. It was used the procedure "NLIN" of the System SAS® (2003) to obtain estimates of the parameters from the available data. The best adjustment of the data were performed by the Bertalanffy, Gompertz and Logistic models which are equivalent to explain the growth of the animals up to 270 days of rearing. From the commercial point of view, it is recommended that commercialization of tilapia from at least 600 g, which is estimated in the Bertalanffy, Gompertz and Logistic models for creating over 183, 181 and 184 days, and up to 1 Kg of mass , it is suggested the suspension of the rearing up to 244, 244 and 243 days, respectively.
Resumo:
The genetic variability of the "curimba", Prochilodus lineatus, from three locations in the Paraná river basin, was investigated by starch gel electrophoresis. A total of 160 specimens were analyzed for 19 enzymes, 12 of which permitted successful interpretation of electrophoretic patterns. Eighteen loci were identified and six of them proved to be polymorphic (EST-1*, EST-2*, IDH-1*, PGM-1*, PGM-2*, LDH-2*). Mean heterozygosity was considered high (13%) by comparison with the literature. A low level of differentiation was found among subpopulations, with mean F ST = 0.018. Values of genetic distance and genetic identity suggest that, at least along this stretch of the river, P. lineatus comprises a single breed with high gene flow. This analysis has important implications for fishery management, aquaculture, and conservation of the stocks
Resumo:
The study area is situated in NE Newfoundland between Gander Lake and the north coast and on the boundary between the Gander and Botwood tectonostratigraphic zones (Williams et al., 1974). The area is underlain by three NE trending units; the Gander Group, the Gander River Ultramafic Belt (the GRUB) and the Davidsville Group. The easternmost Gander Group consists of a thick, psammitic unit composed predominantly of psammitic schist and a thinner, mixed unit of semipelitic and pelitic schist with minor psammite. The mixed unit may stratigraphically overlie the psammitic unit or be a lateral facies equivalent of the latter. No fossils have been recovered from the Gander Group. The GRUB is a terrain of mafic and ultramafic plutonic rocks with minor pillow lava and plagiogranite. It is interpreted to be a dismembered ophiolite in thrust contact with the Gander Group. The westernmost Davidsville Group consists of a basal conglomerate, believed deposited unconformably upon the GRUB from which it was derived, and an upper unit of greywacke and slate, mostly of turbidite origin, with minor limestone and calcareous sandstone. The limestone, which lies near the base of the unit, contains Upper Llanvirn to Lower Llandeilo fossils. The Gander and Davidsville Groups display distinctly different sedimentological , structural and metamorphic histories. The Gander Group consists of quartz-rich, relatively mature sediment. It has suffered three pre-Llanvirn deformations, of which the main deformation, Dp produced a major, NE-N-facing recumbent anticline in the southern part of the study area. Middle greenschist conditions existed from D^ to D- with growth of metamorphic minerals during each dynamic and static phase. In contrast, the mineralogically immature Davidsville Group sediment contains abundant mafic and ultramafic detritus which is absent from the Gander Group. The Davidsville Group displays the effects of a single penetrative deformation with localized D_ and D_ features, all of which can be shown to postdate D_ in the Gander Group. Rotation of the flat Gander S- into a subvertical orientation near the contact with the GRUB and the Davidsville Group is believed to be a Davidsville D^ feature. Regional metamorphism in the Davidsville Group is lower greenschist with a single growth phase, MS . These sedimentological, structural and metamorphic differences between the Gander and Davidsville Groups persist even where the GRUB is absent and the two units are in contact, indicating that the tectonic histories of the Gander and Davidsville Groups are distinctly different. Structural features in the GRUB, locally the result of multiple deformations, may be the result of Gander and/or Davidsville deformations. Metamorphism is in the greenschist facies. Geochemical analyses of the pillow lava suggest that these rocks were formed in a back-arc basin. Mafic intrusives in the Gander Group appear to be the result of magraatism separate from that producing the pillow lava. The Gander Group is interpreted to be a continental rise prism deposited on the eastern margin of the Late Precambrian-Lower Paleozoic lapetus Ocean. The GRUB, oceanic crust possibly formed in a marginal basin to the west, is believed to have been thrust eastward over the Gander Group, deforming the latter, during the pre-Llanvirnian, possibly Precambrian, Ganderian Orogeny. The Middle Ordovician and younger Davidsville Group was derived from, and deposited unconformably on, this deformed terrain. Deformation of the Davidsville Group occurred during the Middle Devonian Acadian Orogeny.
Resumo:
The Niagara River Remedial Action Plan was part of an initiative to restore the integrity of the Great Lakes Basin ecosystem. In 1972, the Great Lakes Water Quality Agreement was signed by both Canada and the United States to demonstrate their commitment to protecting this valuable resource. An amendment in 1987 stipulated that Remedial Action Plans (RAPs) be implemented in 43 ecologically compromised areas known as Areas of Concern. The Niagara River was designated as one of these areas by federal and provincial governments and the International Joint Commission, an independent and binational organization that deals with issues concerning the use and quality of boundary waters between Canada and the United States. Although the affected area included parts of both the Canadian and American side of the river, Remedial Action Plans were developed separately in both Canada and the United States. The Niagara River (Ontario) RAP is a three-stage process requiring collaboration between numerous government agencies and the public. Environment Canada, the Ontario Ministry of the Environment, and the Niagara Peninsula Conservation Authority are the agencies guiding the development and implementation of the Niagara River (Ontario) RAP. The first stage is to determine the severity and causes of the environmental degradation that resulted in the location being designated an Area of Concern; the second stage is to identify and implement actions that will restore and protect the health of the ecosystem; and the third stage is to monitor the area to ensure that the ecosystem’s health has been restored. Stage one of the RAP commenced in January 1989 when a Public Advisory Committee (PAC) was established. This committee was comprised of concerned citizens and representatives from various community groups, associations, industries and municipalities. After several years of consultation, the Niagara River (Ontario) Remedial Action Plan Stage 2 Report was released in 1995. It contained 16 goals and 37 recommendations. Among them was the need for Canadians and Americans to work more collaboratively in order to successfully restore the water quality in the Niagara River. Stage three of the Niagara River (Ontario) RAP is currently ongoing, but it is estimated that it will be completed by 2015. At that point, the Niagara River Area of Concern will be delisted, although monitoring of the area will continue to ensure it remains healthy.
Resumo:
The present work deals with the texture, mineralogy and geochemistry of bedload sediments of the main stream of the Chaliyar basin, a typical small drainage system of the tropics enjoying heavy rain fall and moderate climate, located essentially in the Northern Kerala and flowing over the crystalline rocks (and their laterized duricrust) of the South Indian granulite terrain. As the Chaliyar is the major river draining the Wynad Gold Fields and is known for its placer gold occurrences, the thesis gives special emphasize on understanding the nature and distribution of detrital gold in sediments of the basin, while attempting to infer the provenance characteristics and factors involved in the evolution of sediments in general. Minerologically the chaliyar basin sands are quartzose. The quartz and feldspar contents in the coarse sand fraction of the basin range from 64 to 86% and 2 to 16% respectively. The Q/F ration ranges from 4 to 38 with a slight decrease in the lower reaches. Other minerals present include, hornblende, pyroxene and heavy minerals like opaques, garnet, rutile, biotite, spene, silliminite, zircon, apatite and monazite some of which are seen as inclusions in quartz. The major element composition of Chaliyar bedload sediments in the main channel and the headwater tributaries is related to the mineralogical and textual characteristics of sediments.
Resumo:
This study was aimed at to characterize the spatio-temporal trends in the distributional characteristics of various species of nitrogen and phosphorus as well as to elucidate the factors and processes aflecting these nutrients in the dissolved, particulate and sedimentary phases of a river estuarine system. The main area of study is Chalakudy river in Kerala, which is a fresh water system originating from Anamalai hills and ending at Arabian Sea. Its basin is between I00 05 ’ to I00 35’ North latitude and 76” 15 ’ to 760 55’ East longitude. Being a riparian bufler zone, the dynamics of nutrient mobility tend to be more complex and variable in this river-estuarine system.The diflerent species of nitrogen estimated from the filtrate were nitrite-N, nitrateN, ammonia-N, urea-N, total nitrogen and residual nitrogen. The diflerent forms of phosphorus estimated from the filtrate were phosphate-P, total-P and residualP. Pre weighed sediments as well as particulate matter were analysed for quantijying nitrite-N, nitrate-N, ammonia-N and urea-N. Total nitrogen was estimated after digestion with potassium persulfate. Fractionation of phosphorus in sediment/particulate matter was performed by applying sequential extraction procedure. The dijferent forms of phosphorus thus estimated were loosely bound (exchangeable) P, Fe/Al bound P, polyphosphates, Ca bound P and refractory P. Sedimental total P was also measured directly by applying digestion method.The analyses carried out in this bimonthly annual survey have revealed specific information on the latent factors influencing the water quality pattern ofthe river. There was dependence among the chemical components of the river sediment and suspended matter, reflecting the water quality. A period of profound environmental change occurred and changes in various species had been noted in association with seasonal variations in the waterway, especially following enhanced river runoff during the monsoon. The results also successfully represented the distribution trend of nutrients during the rainy as well as dry season. Thus, the information gathered in this work will also be beneficial for those interested or involved in river management, conservation, regulation and policy making in regional and national levels.
Resumo:
In order to obtain a high-resolution Pleistocene stratigraphy, eleven continuously cored boreholes, 100 to 220m deep were drilled in the northern part of the Po Plain by Regione Lombardia in the last five years. Quantitative provenance analysis (QPA, Weltje and von Eynatten, 2004) of Pleistocene sands was carried out by using multivariate statistical analysis (principal component analysis, PCA, and similarity analysis) on an integrated data set, including high-resolution bulk petrography and heavy-mineral analyses on Pleistocene sands and of 250 major and minor modern rivers draining the southern flank of the Alps from West to East (Garzanti et al, 2004; 2006). Prior to the onset of major Alpine glaciations, metamorphic and quartzofeldspathic detritus from the Western and Central Alps was carried from the axial belt to the Po basin longitudinally parallel to the SouthAlpine belt by a trunk river (Vezzoli and Garzanti, 2008). This scenario rapidly changed during the marine isotope stage 22 (0.87 Ma), with the onset of the first major Pleistocene glaciation in the Alps (Muttoni et al, 2003). PCA and similarity analysis from core samples show that the longitudinal trunk river at this time was shifted southward by the rapid southward and westward progradation of transverse alluvial river systems fed from the Central and Southern Alps. Sediments were transported southward by braided river systems as well as glacial sediments transported by Alpine valley glaciers invaded the alluvial plain. Kew words: Detrital modes; Modern sands; Provenance; Principal Components Analysis; Similarity, Canberra Distance; palaeodrainage
Resumo:
Procesos hidrodinámicos determinan, en un alto grado la calidad del agua en embalse, sin embargo dichos procesos han sido tradicionalmente olvidados en la gestión de embalse. En esta tesis se presentan evidencias de los principales procesos hidrodinámicos que ocurren en un embalse Mediterráneo a escala de cuenca a través de campañas experimentales y modelización numérica; y su influencia en la dinámica de poblaciones de fitoplancton. Dichos procesos son principalmente la generación de ondas internas o secas y la intrusión del río. La presencia de viento periódico genera secas forzadas, amplificando los modos cercanos al periodo del viento, de manera que modos verticales altos, considerados como raros en la naturaleza, tienden a dominar en el sistema.
Resumo:
A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Immature and mature calcretes from an alluvial terrace sequence in the Sorbas basin, southeast Spain, were dated by the U-series isochron technique. The immature horizons consistently produced statistically reliable ages of high precision. The mature horizons typically produced statistically unreliable ages but, because of linear trends in the dataset and low errors associated with each data point, it was still possible to place a best-fit isochron through the dataset to produce an age with low associated uncertainties. It is, however, only possible to prove that these statistically unreliable ages have geochronological significance if multiple isochron ages are produced for a single site, and if these multiple ages are stratigraphically consistent. The geochronological significance of such ages can be further proven if at least one of the multiple ages is statistically reliable. By using this technique to date calcretes that have formed during terrace aggradation and at the terrace surface after terrace abandonment it is possible not only to date the timing of terrace aggradation but also to constrain the age at which the river switched from aggradation to incision. This approach, therefore, constrains the timing of changes in fluvial processes more reliably than any currently used geochronological procedure and is appropriate for dating terrace sequences in dryland regions worldwide, wherever calcrete horizons are present. (c) 2005 University of Washington. All rights reserved.
Resumo:
The state of river water deterioration in the Agueda hydrographic basin, mostly in the western part, partly reflects the high rate of housing and industrial development in this area in recent years. The streams have acted as a sink for organic and inorganic loads from several origins: domestic and industrial sewage and agricultural waste. The contents of the heavy metals Cr, Cd, Ni, Cu, Pb, and Zn were studied by sequential chemical extraction of the principal geochemical phases of streambed sediments, in the <63 mum fraction, in order to assess their potential availability to the environment, investigating, the metal concentrations, assemblages, and trends. The granulometric and mineralogical characteristics of this sediment fraction were also studied. This study revealed clear pollution by Cr, Cd, Ni, Cu, Zn, and Pb, as a result from both natural and anthropogenic origins. The chemical transport of metals appears to be essentially by the following geochemical phases, in decreasing order of significance: (exchangeable + carbonates) much greater than (organics) much greater than (Mn and Fe oxides and hydroxides). The (exchangeable + carbonate) phase plays an important part in the fixation of Cu, Ni, Zn, and Cd. The organic phase is important in the fixation of Cr, Pb, and also Cu and Ni. Analyzing the metal contents in the residual fraction, we conclude that Zn and Cd are the most mobile, and Cr and Pb are less mobile than Cu and Ni. The proximity of the pollutant sources and the timing of the influx of contaminated material control the distribution of the contaminant-related sediments locally and on the network scale.
Resumo:
We have integrated information on topography, geology and geomorphology with the results of targeted fieldwork in order to develop a chronology for the development of Lake Megafazzan, a giant lake that has periodically existed in the Fazzan Basin since the late Miocene. The development of the basin can be best understood by considering the main geological and geomorphological events that occurred thought Libya during this period and thus an overview of the palaeohydrology of all Libya is also presented. The origin of the Fazzan Basin appears to lie in the Late Miocene. At this time Libya was dominated by two large rivers systems that flowed into the Mediterranean Sea, the Sahabi River draining central and eastern Libya and the Wadi Nashu River draining much of western Libya. As the Miocene progressed the region become increasingly affected by volcanic activity on its northern and eastern margin that appears to have blocked the River Nashu in Late Miocene or early Messinian times forming a sizeable closed basin in the Fazzan within which proto-Lake Megafazzan would have developed during humid periods. The fall in base level associated with the Messinian desiccation of the Mediterranean Sea promoted down-cutting and extension of river systems throughout much of Libya. To the south of the proto Fazzan Basin the Sahabi River tributary know as Wadi Barjuj appears to have expanded its headwaters westwards. The channel now terminates at Al Haruj al Aswad. We interpret this as a suggestion that Wadi Barjuj was blocked by the progressive development of Al Haruj al Aswad. K/Ar dating of lava flows suggests that this occurred between 4 and 2 Ma. This event would have increased the size of the closed basin in the Fazzan by about half, producing a catchment close to its current size (-350,000 km(2)). The Fazzan Basin contains a wealth of Pleistocene to recent palaeolake sediment outcrops and shorelines. Dating of these features demonstrates evidence of lacustrine conditions during numerous interglacials spanning a period greater than 420 ka. The middle to late Pleistocene interglacials were humid enough to produce a giant lake of about 135,000 km(2) that we have called Lake Megafazzan. Later lake phases were smaller, the interglacials less humid, developing lakes of a few thousand square kilometres. In parallel with these palaeohydrological developments in the Fazzan Basin, change was occurring in other parts of Libya. The Lower Pliocene sea level rise caused sediments to infill much of the Messinian channel system. As this was occurring, subsidence in the Al Kufrah Basin caused expansion of the Al Kufrah River system at the expense of the River Sahabi. By the Pleistocene, the Al Kufrah River dominated the palaeohydrology of eastern Libya and had developed a very large inland delta in its northern reaches that exhibited a complex distributary channel network which at times fed substantial lakes in the Sirt Basin. At this time Libya was a veritable lake district during humid periods with about 10% of the country underwater. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A regional overview of the water quality and ecology of the River Lee catchment is presented. Specifically, data describing the chemical, microbiological and macrobiological water quality and fisheries communities have been analysed, based on a division into river, sewage treatment works, fish-farm, lake and industrial samples. Nutrient enrichment and the highest concentrations of metals and micro-organics were found in the urbanised, lower reaches of the Lee and in the Lee Navigation. Average annual concentrations of metals were generally within environmental quality standards although, oil many occasions, concentrations of cadmium, copper, lead, mercury and zinc were in excess of the standards. Various organic substances (used as herbicides, fungicides, insecticides, chlorination by-products and industrial solvents) were widely detected in the Lee system. Concentrations of ten micro-organic substances were observed in excess of their environmental quality standards, though not in terms of annual averages. Sewage treatment works were the principal point source input of nutrients. metals and micro-organic determinands to the catchment. Diffuse nitrogen sources contributed approximately 60% and 27% of the in-stream load in the upper and lower Lee respectively, whereas approximately 60% and 20% of the in-stream phosphorus load was derived from diffuse sources in the upper and lower Lee. For metals, the most significant source was the urban runoff from North London. In reaches less affected by effluent discharges, diffuse runoff from urban and agricultural areas dominated trends. Flig-h microbiological content, observed in the River Lee particularly in urbanised reaches, was far in excess of the EC Bathing Water Directive standards. Water quality issues and degraded habitat in the lower reaches of the Lee have led to impoverished aquatic fauna but, within the mid-catchment reaches and upper agricultural tributaries, less nutrient enrichment and channel alteration has permitted more diverse aquatic fauna.
Resumo:
The Water Framework Directive has caused a paradigm shift towards the integrated management of recreational water quality through the development of drainage basin-wide programmes of measures. This has increased the need for a cost-effective diagnostic tool capable of accurately predicting riverine faecal indicator organism (FIO) concentrations. This paper outlines the application of models developed to fulfil this need, which represent the first transferrable generic FIO models to be developed for the UK to incorporate direct measures of key FIO sources (namely human and livestock population data) as predictor variables. We apply a recently developed transfer methodology, which enables the quantification of geometric mean presumptive faecal coliforms and presumptive intestinal enterococci concentrations for base- and high-flow during the summer bathing season in unmonitored UK watercourses, to predict FIO concentrations in the Humber river basin district. Because the FIO models incorporate explanatory variables which allow the effects of policy measures which influence livestock stocking rates to be assessed, we carry out empirical analysis of the differential effects of seven land use management and policy instruments (fiscal constraint, production constraint, cost intervention, area intervention, demand-side constraint, input constraint, and micro-level land use management) all of which can be used to reduce riverine FIO concentrations. This research provides insights into FIO source apportionment, explores a selection of pollution remediation strategies and the spatial differentiation of land use policies which could be implemented to deliver river quality improvements. All of the policy tools we model reduce FIO concentrations in rivers but our research suggests that the installation of streamside fencing in intensive milk producing areas may be the single most effective land management strategy to reduce riverine microbial pollution.