962 resultados para Residual autocorrelation and autocovariance matrices
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data
Resumo:
A variety of language disturbances including aphasia have been described after subcortical stroke but less is known about the factors that influence the long-term recovery of stroke-induced language dysfunction. We prospectively examined the role of the affected hemisphere and the lesion site in the occurrence and recovery of language deficits in nonthalamic subcortical stroke. Forty patients with unilateral basal gangliastroke underwent language assessment within 1 week, 3 months and 1 year after stroke. Disturbances in at least one language domain were observed in 35 patients during the first week post stroke including aphasia diagnosed in 11 patients. Importantly, the appearance of deficits after stroke onset and the improvement of language function were not determined by the site of subcortical lesion, but instead were critically influenced by the affected hemisphere. In fact, the language impairments following left and right basal ganglia stroke mirrored the language dysfunction observed after cortical lesions in the same hemisphere. A significant overall language improvement was observed at 3 months after stroke, although residual deficits in languageexecutive function were the most commonly observed impairment at 1 year follow-up. Although a substantial improvement of language function can be expected after nonthalamic subcortical stroke, our findings suggest that language recovery may not be fully achieved at 1 year post
Resumo:
In this study it was evaluated the effects of hydraulic retention time (HRT) and Organic Loading Rate (OLR) on the performance of UASB (Upflow Anaerobic Sludge Blanket) reactors in two stages treating residual waters of swine farming. The system consisted of two UASB reactors in pilot scale, installed in series, with volumes of 908 and 188 L, for the first and second stages (R1 and R2), respectively. The HRT applied in the system of anaerobic treatment in two stages (R1 + R2) was of 19.3, 29.0 and 57.9 h. The OLR applied in the R1 ranged from 5.5 to 40.1 kg CODtotal (m³ d)-1. The average removal efficiencies of chemical oxygen demand (COD) and total suspended solids (TSS) ranged, respectively, from 66.3 to 88.2% and 62.5 to 89.3% in the R1, and from 85.5 to 95.5% and 76.4 to 96.1% in the system (R1 + R2). The volumetric production of methane in the system (R1 + R2) ranged from 0.295 to 0.721 m³CH4 (m³ reactor d)-1. It was found that the OLR applied were not limiting to obtain high efficiencies of CODtotal and TSS removal and methane production. The inclusion of the UASB reactor in the second stage contributed to increase the efficiencies of CODtotal and TSS removal, especially, when the treatment system was submitted to the lowest HRT and the highest OLR.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
A trade-off between return and risk plays a central role in financial economics. The intertemporal capital asset pricing model (ICAPM) proposed by Merton (1973) provides a neoclassical theory for expected returns on risky assets. The model assumes that risk-averse investors (seeking to maximize their expected utility of lifetime consumption) demand compensation for bearing systematic market risk and the risk of unfavorable shifts in the investment opportunity set. Although the ICAPM postulates a positive relation between the conditional expected market return and its conditional variance, the empirical evidence on the sign of the risk-return trade-off is conflicting. In contrast, autocorrelation in stock returns is one of the most consistent and robust findings in empirical finance. While autocorrelation is often interpreted as a violation of market efficiency, it can also reflect factors such as market microstructure or time-varying risk premia. This doctoral thesis investigates a relation between the mixed risk-return trade-off results and autocorrelation in stock returns. The results suggest that, in the case of the US stock market, the relative contribution of the risk-return trade-off and autocorrelation in explaining the aggregate return fluctuates with volatility. This effect is then shown to be even more pronounced in the case of emerging stock markets. During high-volatility periods, expected returns can be described using rational (intertemporal) investors acting to maximize their expected utility. During lowvolatility periods, market-wide persistence in returns increases, leading to a failure of traditional equilibrium-model descriptions for expected returns. Consistent with this finding, traditional models yield conflicting evidence concerning the sign of the risk-return trade-off. The changing relevance of the risk-return trade-off and autocorrelation can be explained by heterogeneous agents or, more generally, by the inadequacy of the neoclassical view on asset pricing with unboundedly rational investors and perfect market efficiency. In the latter case, the empirical results imply that the neoclassical view is valid only under certain market conditions. This offers an economic explanation as to why it has been so difficult to detect a positive tradeoff between the conditional mean and variance of the aggregate stock return. The results highlight the importance, especially in the case of emerging stock markets, of noting both the risk-return trade-off and autocorrelation in applications that require estimates for expected returns.
Resumo:
To determine the influence of residual ß-cell function on retinopathy and microalbuminuria we measured basal C-peptide in 50 type 1 diabetic outpatients aged 24.96 ± 7.14 years, with a duration of diabetes of 9.1 ± 6.2 years. Forty-three patients (86%) with low C-peptide (<0.74 ng/ml) had longer duration of diabetes than 7 patients (14%) with high C-peptide (³0.74 ng/ml) (9 (2-34) vs 3 (1-10) years, P = 0.01) and a tendency to high glycated hemoglobin (HBA1) (8.8 (6-17.9) vs 7.7 (6.9-8.7)%, P = 0.08). Nine patients (18%) had microalbuminuria (two out of three overnight urine samples with an albumin excretion rate (AER) ³20 and <200 µg/min) and 13 (26%) had background retinopathy. No association was found between low C-peptide, microalbuminuria and retinopathy and no difference in basal C-peptide was observed between microalbuminuric and normoalbuminuric patients (0.4 ± 0.5 vs 0.19 ± 0.22 ng/ml, P = 0.61) and between patients with or without retinopathy (0.4 ± 0.6 vs 0.2 ± 0.3 ng/ml, P = 0.43). Multiple regression analysis showed that duration of diabetes (r = 0.30, r2 = 0.09, P = 0.031) followed by HBA1 (r = 0.41, r2 = 0.17, P = 0.01) influenced basal C-peptide, and this duration of diabetes was the only variable affecting AER (r = 0.40, r2 = 0.16, P = 0.004). In our sample of type 1 diabetic patients residual ß-cell function was not associated with microalbuminuria or retinopathy.
Resumo:
Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with inflammatory cell reactions, tissue destruction and lung remodeling. Many signaling pathways for these phenomena are still to be identified. We developed a mouse model of COPD to evaluate some pathophysiological mechanisms acting during the initial stage of the disease. Forty-seven 6- to 8-week-old female C57/BL6 mice (approximately 22 g) were exposed for 2 months to cigarette smoke and/or residual oil fly ash (ROFA), a concentrate of air pollution. We measured lung mechanics, airspace enlargement, airway wall thickness, epithelial cell profile, elastic and collagen fiber deposition, and by immunohistochemistry transforming growth factor-β1 (TGF-β1), macrophage elastase (MMP12), neutrophils and macrophages. We observed regional airspace enlargements near terminal bronchioles associated with the exposure to smoke or ROFA. There were also increases in airway resistance and thickening of airway walls in animals exposed to smoke. In the epithelium, we noted a decrease in the ciliated cell area of animals exposed to smoke and an increase in the total cell area associated with exposure to both smoke and ROFA. There was also an increase in the expression of TGF-β1 both in the airways and parenchyma of animals exposed to smoke. However, we could not detect inflammatory cell recruitment, increases in MMP12 or elastic and collagen fiber deposition. After 2 months of exposure to cigarette smoke and/or ROFA, mice developed regional airspace enlargements and airway epithelium remodeling, although no inflammation or increases in fiber deposition were detected. Some of these phenomena may have been mediated by TGF-β1.
Resumo:
This thesis investigates two cases of Christian churches, which as a part of their mission seek to accommodate people who would otherwise not be interested in church. One of these communities consider themselves a part of the global 'emerging church' movement, and the other does not. I argue that both communities are employing what I call 'de-compartmentalization' strategy in order to adopt a pragmatic relationship with social and political issues. Furthermore I discuss the case of the emerging church community as an example of 'paraliminal community '; a concept I develop from the work of Victor Turner and Arnold van Gennep.
Resumo:
Les amidons non modifiées et modifiés représentent un groupe d’excipients biodégradables et abondants particulièrement intéressant. Ils ont été largement utilisés en tant qu’excipients à des fins diverses dans des formulations de comprimés, tels que liants et/ou agents de délitement. Le carboxyméthylamidon sodique à haute teneur en amylose atomisé (SD HASCA) a été récemment proposé comme un excipient hydrophile à libération prolongée innovant dans les formes posologiques orales solides. Le carboxyméthylamidon sodique à haute teneur en amylose amorphe (HASCA) a d'abord été produit par l'éthérification de l'amidon de maïs à haute teneur en amylose avec le chloroacétate. HASCA a été par la suite séché par atomisation pour obtenir le SD HASCA. Ce nouvel excipient a montré des propriétés présentant certains avantages dans la production de formes galéniques à libération prolongée. Les comprimés matriciels produits à partir de SD HASCA sont peu coûteux, simples à formuler et faciles à produire par compression directe. Le principal objectif de cette recherche était de poursuivre le développement et l'optimisation des comprimés matriciels utilisant SD HASCA comme excipient pour des formulations orales à libération prolongée. A cet effet, des tests de dissolution simulant les conditions physiologiques du tractus gastro-intestinal les plus pertinentes, en tenant compte de la nature du polymère à l’étude, ont été utilisés pour évaluer les caractéristiques à libération prolongée et démontrer la performance des formulations SD HASCA. Une étude clinique exploratoire a également été réalisée pour évaluer les propriétés de libération prolongée de cette nouvelle forme galénique dans le tractus gastro-intestinal. Le premier article présenté dans cette thèse a évalué les propriétés de libération prolongée et l'intégrité physique de formulations contenant un mélange comprimé de principe actif, de chlorure de sodium et de SD HASCA, dans des milieux de dissolution biologiquement pertinentes. L'influence de différentes valeurs de pH acide et de temps de séjour dans le milieu acide a été étudiée. Le profil de libération prolongée du principe actif à partir d'une formulation de SD HASCA optimisée n'a pas été significativement affecté ni par la valeur de pH acide ni par le temps de séjour dans le milieu acide. Ces résultats suggèrent une influence limitée de la variabilité intra et interindividuelle du pH gastrique sur la cinétique de libération à partir de matrices de SD HASCA. De plus, la formulation optimisée a gardé son intégrité pendant toute la durée des tests de dissolution. L’étude in vivo exploratoire a démontré une absorption prolongée du principe actif après administration orale des comprimés matriciels de SD HASCA et a montré que les comprimés ne se sont pas désintégrés en passant par l'estomac et qu’ils ont résisté à l’hydrolyse par les α-amylases dans l'intestin. Le deuxième article présente le développement de comprimés SD HASCA pour une administration orale une fois par jour et deux fois par jour contenant du chlorhydrate de tramadol (100 mg et 200 mg). Ces formulations à libération prolongée ont présenté des valeurs de dureté élevées sans nécessiter l'ajout de liants, ce qui facilite la production et la manipulation des comprimés au niveau industriel. La force de compression appliquée pour produire les comprimés n'a pas d'incidence significative sur les profils de libération du principe actif. Le temps de libération totale à partir de comprimés SD HASCA a augmenté de manière significative avec le poids du comprimé et peut, de ce fait, être utilisé pour moduler le temps de libération à partir de ces formulations. Lorsque les comprimés ont été exposés à un gradient de pH et à un milieu à 40% d'éthanol, un gel très rigide s’est formé progressivement sur leur surface amenant à la libération prolongée du principe actif. Ces propriétés ont indiqué que SD HASCA est un excipient robuste pour la production de formes galéniques orales à libération prolongée, pouvant réduire la probabilité d’une libération massive de principe actif et, en conséquence, des effets secondaires, même dans le cas de co-administration avec une forte dose d'alcool. Le troisième article a étudié l'effet de α-amylase sur la libération de principe actif à partir de comprimés SD HASCA contenant de l’acétaminophène et du chlorhydrate de tramadol qui ont été développés dans les premières étapes de cette recherche (Acetaminophen SR et Tramadol SR). La modélisation mathématique a montré qu'une augmentation de la concentration d’α-amylase a entraîné une augmentation de l'érosion de polymère par rapport à la diffusion de principe actif comme étant le principal mécanisme contrôlant la libération de principe actif, pour les deux formulations et les deux temps de résidence en milieu acide. Cependant, même si le mécanisme de libération peut être affecté, des concentrations d’α-amylase allant de 0 UI/L à 20000 UI/L n'ont pas eu d'incidence significative sur les profils de libération prolongée à partir de comprimés SD HASCA, indépendamment de la durée de séjour en milieu acide, le principe actif utilisé, la teneur en polymère et la différente composition de chaque formulation. Le travail présenté dans cette thèse démontre clairement l'utilité de SD HASCA en tant qu'un excipient à libération prolongée efficace.
Resumo:
The effect of residual cations in rare earth metal modified faujasite–Y zeolite has been monitored using magic angle spinning NMR spectral analysis and catalytic activity studies. The second metal ions being used are Na+, K+ and Mg+. From a comparison of the spectra of different samples, it is concluded that potassium and magnesium exchange causes a greater downfield shift in the 29Si NMR peaks. Also, lanthanum exchanged samples show migration behavior from large cages to small cages, which causes the redistribution of second counter cations. It is also observed that Mg2+ causes the most effective migration of lanthanum ions due to its greater charge. The prepared systems were effectively employed for the alkylation of benzene with 1-octene in the vapor phase. From the deactivation studies it is observed that the as-exchanged zeolites possess better stability towards reaction condition over the pure HFAU zeolite.
Resumo:
Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements
Resumo:
Grey Level Co-occurrence Matrices (GLCM) are one of the earliest techniques used for image texture analysis. In this paper we defined a new feature called trace extracted from the GLCM and its implications in texture analysis are discussed in the context of Content Based Image Retrieval (CBIR). The theoretical extension of GLCM to n-dimensional gray scale images are also discussed. The results indicate that trace features outperform Haralick features when applied to CBIR.
Resumo:
In this paper, we study the relationship between the failure rate and the mean residual life of doubly truncated random variables. Accordingly, we develop characterizations for exponential, Pareto 11 and beta distributions. Further, we generalize the identities for fire Pearson and the exponential family of distributions given respectively in Nair and Sankaran (1991) and Consul (1995). Applications of these measures in file context of lengthbiased models are also explored