863 resultados para Representation Construction Approach
Resumo:
The construction sector is often described as lagging behind other major industries. At first this appears fair when considering the concept of corporate social responsibility (CSR). It is argued that CSR is ill-defined, with firms struggling to make sense of and engage with it. Literature suggests that the short-termism view of construction firms renders the long-term, triple-bottom-line principle of CSR untenable. This seems to be borne out by literature indicating that construction firms typically adopt a compliance-based approach to CSR instead of discretionary CSR which is regarded as adding most value to firms and benefiting the broadest group of stakeholders. However, this research conducted in the UK using a regional construction firm offers a counter argument whereby discretionary CSR approaches are well embedded and enacted within the firms’ business operations even though they are not formally articulated as CSR strategies and thus remain 'hidden'. This raises questions in the current CSR debate. First, is ‘hidden’ CSR relevant to the long term success of construction firms? and to what extent do these firms need to reinvent themselves to formally take advantage of the CSR agenda?
Resumo:
The traditional economic approach for appraising the costs and benefits of construction project Net Present Values involves the calculation of net returns for each investment option under different discount rates. An alternative approach consists of multiple-project discount rates based on risk modelling. The example of a portfolio of microgeneration renewable energy technology (MRET) is presented to demonstrate that risks and future available budget for re-investment can be taken into account when setting discount rates for construction project specifications in presence of uncertainty. A formal demonstration is carried out through a reversed intertemporal approach of applied general equilibrium. It is demonstrated that risk and the estimated available budget for future re-investment can be included in the simultaneous assessment of the costs and benefits of multiple projects.
Resumo:
Government and institutionally-driven ‘good practice transfer’ initiatives are consistently presented as a means to enhance construction firm and industry performance. Two implicit tenets of these initiatives appear to be: knowledge embedded in good practice will transfer automatically; and, the potential of implementing good practice will be capitalised regardless of the context where it is to be used. The validity of these tenets is increasingly being questioned and, concurrently, more nuanced knowledge production understandings are being developed which recognise and incorporate context-specificity. This research contributes to this growing, more critical agenda by examining the actual benefits accrued from good practice transfer from the perspective of a small specialist trade contracting firm. A concept model for successful good practice transfer is developed from a single longitudinal case study within a small heating and plumbing firm. The concept model consists of five key variables: environment, strategy, people, technology, and organisation of work. The key findings challenge the implicit assumptions prevailing in the existing literature and support a contingency approach that argues successful good practice transfer is not just adopting and mechanistically inserting into the firm, but requires addressing ‘behavioural’ aspects. For successful good practice transfer, small specialist trade contracting firms need to develop and operationalise organisation slack, mechanisms for scanning external stimuli and absorbing knowledge. They also need to formulate and communicate client-driven external strategies; to motive and educate people at all levels; to possess internal or accessible complementary skills and knowledge; to have ‘soft focus’ immediate/mid-term benefits at a project level; and, to embed good practice in current work practices.
Resumo:
Housing in the UK accounts for 30.5% of all energy consumed and is responsible for 25% of all carbon emissions. The UK Government’s Code for Sustainable Homes requires all new homes to be zero carbon by 2016. The development and widespread diffusion of low and zero carbon (LZC) technologies is recognised as being a key solution for housing developers to deliver against this zero-carbon agenda. The innovation challenge to design and incorporate these technologies into housing developers’ standard design and production templates will usher in significant technical and commercial risks. In this paper we report early results from an ongoing Engineering and Physical Sciences Research Council project looking at the innovation logic and trajectory of LZC technologies in new housing. The principal theoretical lens for the research is the socio-technical network approach which considers actors’ interests and interpretative flexibilities of technologies and how they negotiate and reproduce ‘acting spaces’ to shape, in this case, the selection and adoption of LZC technologies. The initial findings are revealing the form and operation of the technology networks around new housing developments as being very complex, involving a range of actors and viewpoints that vary for each housing development.
Resumo:
The construction sector has a major role to play in delivering the transition to a low carbon economy and in contributing to sustainable development; however, integrating sustainability into everyday business remains a major challenge for the sector. This research explores the experience of three large construction and engineering consultancy firms in mainstreaming sustainability. The aim of the paper is to identify and explain variations in firm level strategies for mainstreaming sustainability. The three cases vary in the way in which sustainability is ramed – as a problem of risk, business opportunity or culture – and in its location within the firm. The research postulates that the mainstreaming of sustainability is not the uniform linear process often articulated in theories of strategic change and management, but varies with the dominant organisational culture and history of each firm. he paper concludes with a reflection on the implications of this analysis for management theories and for firm level strategies.
Resumo:
Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, whereas the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).
Resumo:
The building sector is one of the highest consumers of energy in the world. This has led to high dependency on using fossil fuel to supply energy without due consideration to its environmental impact. Saudi Arabia has been through rapid development accompanied by population growth, which in turn has increased the demand for construction. However, this fast development has been met without considering sustainable building design. General design practices rely on using international design approaches and features without considering the local climate and aspects of traditional passive design. This is by constructing buildings with a large amount of glass fully exposed to solar radiation. The aim of this paper is to investigate the development of sustainability in passive design and vernacular architecture. Furthermore, it compares them with current building in Saudi Arabia in terms of making the most of the climate. Moreover, it will explore the most sustainable renewable energy that can be used to reduce the environmental impact on modern building in Saudi Arabia. This will be carried out using case studies demonstrating the performance of vernacular design in Saudi Arabia and thus its benefits in terms of environmental, economic and social sustainability. It argues that the adoption of a hybrid approach can improve the energy efficiency as well as reduce the carbon footprint of buildings. This is by combining passive design, learning from the vernacular architecture and implementing innovative sustainable technologies.
Resumo:
Local, tacit and normally unspoken OHS (occupational health and safety) knowledge and practices can too easily be excluded from or remain below the industry horizon of notice, meaning that they remain unaccounted for in formal OHS policy and practice. In this article we stress the need to more systematically and routinely tap into these otherwise ‘hidden’ communication channels, which are central to how everyday safe working practices are achieved. To demonstrate this approach this paper will draw on our ethnographic research with a gang of migrant curtain wall installers on a large office development project in the north of England. In doing so we reflect on the practice-based nature of learning and sharing OHS knowledge through examples of how workers’ own patterns of successful communication help avoid health and safety problems. These understandings, we argue, can be advanced as a basis for the development of improved OHS measures, and of organizational knowing and learning.
Resumo:
As wind generation increases, system impact studies rely on predictions of future generation and effective representation of wind variability. A well-established approach to investigate the impact of wind variability is to simulate generation using observations from 10 m meteorological mast-data. However, there are problems with relying purely on historical wind-speed records or generation histories: mast-data is often incomplete, not sited at a relevant wind generation sites, and recorded at the wrong altitude above ground (usually 10 m), each of which may distort the generation profile. A possible complimentary approach is to use reanalysis data, where data assimilation techniques are combined with state-of-the-art weather forecast models to produce complete gridded wind time-series over an area. Previous investigations of reanalysis datasets have placed an emphasis on comparing reanalysis to meteorological site records whereas this paper compares wind generation simulated using reanalysis data directly against historic wind generation records. Importantly, this comparison is conducted using raw reanalysis data (typical resolution ∼50 km), without relying on a computationally expensive “dynamical downscaling” for a particular target region. Although the raw reanalysis data cannot, by nature of its construction, represent the site-specific effects of sub-gridscale topography, it is nevertheless shown to be comparable to or better than the mast-based simulation in the region considered and it is therefore argued that raw reanalysis data may offer a number of significant advantages as a data source.
Resumo:
We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.
Resumo:
Drought characterisation is an intrinsically spatio-temporal problem. A limitation of previous approaches to characterisation is that they discard much of the spatio-temporal information by reducing events to a lower-order subspace. To address this, an explicit 3-dimensional (longitude, latitude, time) structure-based method is described in which drought events are defined by a spatially and temporarily coherent set of points displaying standardised precipitation below a given threshold. Geometric methods can then be used to measure similarity between individual drought structures. Groupings of these similarities provide an alternative to traditional methods for extracting recurrent space-time signals from geophysical data. The explicit consideration of structure encourages the construction of summary statistics which relate to the event geometry. Example measures considered are the event volume, centroid, and aspect ratio. The utility of a 3-dimensional approach is demonstrated by application to the analysis of European droughts (15 °W to 35°E, and 35 °N to 70°N) for the period 1901–2006. Large-scale structure is found to be abundant with 75 events identified lasting for more than 3 months and spanning at least 0.5 × 106 km2. Near-complete dissimilarity is seen between the individual drought structures, and little or no regularity is found in the time evolution of even the most spatially similar drought events. The spatial distribution of the event centroids and the time evolution of the geographic cross-sectional areas strongly suggest that large area, sustained droughts result from the combination of multiple small area (∼106 km2) short duration (∼3 months) events. The small events are not found to occur independently in space. This leads to the hypothesis that local water feedbacks play an important role in the aggregation process.
Resumo:
Straightforward mathematical techniques are used innovatively to form a coherent theoretical system to deal with chemical equilibrium problems. For a systematic theory it is necessary to establish a system to connect different concepts. This paper shows the usefulness and consistence of the system by applications of the theorems introduced previously. Some theorems are shown somewhat unexpectedly to be mathematically correlated and relationships are obtained in a coherent manner. It has been shown that theorem 1 plays an important part in interconnecting most of the theorems. The usefulness of theorem 2 is illustrated by proving it to be consistent with theorem 3. A set of uniform mathematical expressions are associated with theorem 3. A variety of mathematical techniques based on theorems 1–3 are shown to establish the direction of equilibrium shift. The equilibrium properties expressed in initial and equilibrium conditions are shown to be connected via theorem 5. Theorem 6 is connected with theorem 4 through the mathematical representation of theorem 1.
Resumo:
As a major mode of intraseasonal variability, which interacts with weather and climate systems on a near-global scale, the Madden – Julian Oscillation (MJO) is a crucial source of predictability for numerical weather prediction (NWP) models. Despite its global significance and comprehensive investigation, improvements in the representation of the MJO in an NWP context remain elusive. However, recent modifications to the model physics in the ECMWF model led to advances in the representation of atmospheric variability and the unprecedented propagation of the MJO signal through the entire integration period. In light of these recent advances, a set of hindcast experiments have been designed to assess the sensitivity of MJO simulation to the formulation of convection. Through the application of established MJO diagnostics, it is shown that the improvements in the representation of the MJO can be directly attributed to the modified convective parametrization. Furthermore, the improvements are attributed to the move from a moisture-convergent- to a relative-humidity-dependent formulation for organized deep entrainment. It is concluded that, in order to understand the physical mechanisms through which a relative-humidity-dependent formulation for entrainment led to an improved simulation of the MJO, a more process-based approach should be taken. T he application of process-based diagnostics t o t he hindcast experiments presented here will be the focus of Part II of this study.
Resumo:
Purpose – The construction industry is a very important part of the Malaysian economy. The government's aim is to make the industry more productive, efficient and safe. Small to medium-sized enterprises (SMEs) are at the core of the Malaysian construction industry and account for about 90 per cent of companies undertaking construction work. One of the main challenges faced by the Malaysian construction industry is the ability to absorb new knowledge and technology and to implement it in the construction phase. The purpose of this paper is to consider absorptive capacity in Malaysian construction SMEs in rural areas. Design/methodology/approach – The research was conducted in three stages: first, understanding the Malaysian construction industry; second, a literature review on the issues related to absorptive capacity and discussions with the Construction Industry Development Board (CIDB); and third, multiple case studies in five construction SMEs operating in a rural area to validate the factors influencing absorptive capacity. Findings – Nine key factors were identified influencing absorptive capacity in Malaysian construction SMEs operating in rural areas. These factors involved: cost and affordability; availability and supply; demand; infrastructure; policies and regulations; labour readiness; workforce attitude and motivation; communication and sources of new knowledge and; culture. Originality/value – The key factors influencing absorptive capacity presented in this paper are based on validation from the case studies in five construction SMEs in Malaysia. The research focuses on how they operate in rural areas; however, the research results have wider application than just Malaysia. The key factors identified as influencing absorptive capacity can serve as a basis for considering knowledge absorption in the wider context by SMEs in other developing countries.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.