803 resultados para Redundancy gain
Resumo:
A Brillouin-gain based distributed temperature sensor has been investigated experimentally and theoretically. The relation between Brillouin gain, input probe power and sensing length have been studied. The study shows that there is an optimum probe power providing a maximum Brillouin gain signal for a given sensing length.
Resumo:
We perform optimisation of bi-directionally pumped dispersion compensating Raman amplifier modules. Optimal forward and backward pump powers for basic configurations using different commercially available fibers are presented for both single- and multi-channel systems. Optical signal-to-noise ratio improvement of up to 8 dB is achieved as a result of optimisation. © 2003 Published by Elsevier B.V.
Resumo:
OBJECTIVE. Our objective with this study was to examine whether observed maternal control during feeding at 6 months of age moderates the development of early infant weight gain during the first year of life. METHODS. Sixty-nine women were observed feeding their 6-month-old infants during a standard meal. Mealtimes were coded for maternal use of controlling feeding behavior. All infants were weighed at birth and at 6 and 12 months of age, and weight gain was calculated from birth to 6 months and from 6 to 12 months. Weight scores and weight gain scores were standardized for prematurity, age, and gender. RESULTS. Infant weight gain between 6 and 12 months of age was predicted by an interaction between early infant weight gain (birth to 6 months) and observed maternal control during feeding at 6 months. When maternal control was moderate or low, there was a significant interaction with weight gain from birth to 6 months in the prediction of later infant weight gain from 6 to 12 months, such that infants who showed slow early weight gain accelerated in their subsequent weight gain, and those with greater early weight gain decelerated. Conversely, when maternal control was high, infant weight gain followed the opposite pattern. CONCLUSION. Maternal control of solid feeding can moderate infant weight gain.
Resumo:
The spectral narrowing and selective tuning of picosecond pulse outputs from gain-switched diode laser and a four Bragg-grating fiber, were investigated. The fiber used under investigation was designed to provide spectral narrowing and multiple wavelength/temporal output. The maximum transmission out of each of the four output fibers was ∼7.5 mW, for a current of 180 mA. The results show that an output of any combination of multiple wavelengths is only produced at modulation frequencies which satisfy resonant conditions for all cavity arms simultaneously.
Resumo:
We propose and evaluate through extensive numerical modelling a novel distributed hybrid amplification scheme combining first and second-order Raman pumping which gives reduced signal power excursion over a wide spatial-spectral range of 60 km × 80 nm in C + L-bands. © 2013 Optical Society of America.
Gain switched multi-carrier transmitter and pilot tone based receiver for long reach access networks
Resumo:
A novel and cost effective long reach PON downlink scenario is proposed employing a multi-carrier transmitter and pilot tone aided direct detection at the receiver. Error free performance with QPSK and 50km transmission is presented. © 2012 OSA.
Resumo:
This article proposes a frequency agile antenna whose operating frequency band can be switched. The design is based on a Vivaldi antenna. High-performance radio-frequency microelectromechanical system (RF-MEMS) switches are used to realize the 2.7 GHz and 3.9 GHz band switching. The low band starts from 2.33 GHz and works until 3.02 GHz and the high band ranges from 3.29 GHz up to 4.58 GHz. The average gains of the antenna at the low and high bands are 10.9 and 12.5 dBi, respectively. This high-gain frequency reconfigurable antenna could replace several narrowband antennas for reducing costs and space to support multiple communication systems, while maintaining good performance.
Resumo:
Nonlinear CW pump broadening over non-standard transmission fiber is used for the first time to achieve superior gain variation performance in a single-pump broadband Raman amplifier. A threefold increase in the bandwidth for 0.1 dB gain variation is reported.
Resumo:
In this paper, we present an analysis and optimisation of the performance of bi-directionally pumped dispersion compensation modules acting as simultaneous Raman amplifiers, with optimal configurations for operation with different fibers commercially available. The ratio between forward and backward pump powers for minimum noise influence is obtained in each case, with improvements in the SNR of up to 8 dB when compared to a purely backward-pumped case.
Resumo:
Error free unregenerated transmission is demonstrated looped-back over 5,745 km (62 spans) of installed SSMF along the Adelaide-Perth leg of the IP1 Australia network, which is now the world's longest commercially deployed unregenerated 10 Gbit/s DWDM terrestrial transmission system. © 2000 Optical Society of America.
Resumo:
A simple and efficient approach to the optimal design of 3-wavelength backward-pumped Raman amplifiers is proposed. Gain flatness of 1.7 dB is demonstrated in a spectral range of 1520-1595 nm using only three pumps with wavelengths within the 1420-1480 nm interval.
Resumo:
We have generated near-transform-limited picosecond pulses(ΔτΔν≈0.45) from a gain-switched diode laser using periodic and chirped fiber Bragg gratings. This configuration reduced the spectral bandwidth from 11 to 0.08 nm and the pulse duration was reduced, from 30 to<18 ps. Average and peak powers of 27 and 770 mW, respectively, were obtained.
Resumo:
We study existence, stability, and dynamics of linear and nonlinear stationary modes propagating in radially symmetric multicore waveguides with balanced gain and loss. We demonstrate that, in general, the system can be reduced to an effective PT-symmetric dimer with asymmetric coupling. In the linear case, we find that there exist two modes with real propagation constants before an onset of the PT-symmetry breaking while other modes have always the propagation constants with nonzero imaginary parts. This leads to a stable (unstable) propagation of the modes when gain is localized in the core (ring) of the waveguiding structure. In the case of nonlinear response, we show that an interplay between nonlinearity, gain, and loss induces a high degree of instability, with only small windows in the parameter space where quasistable propagation is observed. We propose a novel stabilization mechanism based on a periodic modulation of both gain and loss along the propagation direction that allows bounded light propagation in the multicore waveguiding structures.
Resumo:
Link quality-based rate adaptation has been widely used for IEEE 802.11 networks. However, network performance is affected by both link quality and random channel access. Selection of transmit modes for optimal link throughput can cause medium access control (MAC) throughput loss. In this paper, we investigate this issue and propose a generalised cross-layer rate adaptation algorithm. It considers jointly link quality and channel access to optimise network throughput. The objective is to examine the potential benefits by cross-layer design. An efficient analytic model is proposed to evaluate rate adaptation algorithms under dynamic channel and multi-user access environments. The proposed algorithm is compared to link throughput optimisation-based algorithm. It is found rate adaptation by optimising link layer throughput can result in large performance loss, which cannot be compensated by the means of optimising MAC access mechanism alone. Results show cross-layer design can achieve consistent and considerable performance gains of up to 20%. It deserves to be exploited in practical design for IEEE 802.11 networks.
Resumo:
Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on battery failure rate to suggest suitable figures for use in reliability calculations. The paper then uses reliability analysis and a numerical example to investigate six different multi-modular topologies and suggests how the number of series battery strings and power electronic module redundancy should be determined for the lowest hardware cost using a numerical example. The results reveal that the cascaded dc-side modular with single inverter is the lowest cost solution for a range of battery failure rates.