961 resultados para Reactors
Resumo:
The aim of this paper was to evaluate the efficiency of the treatment of cassava wastewater, separately from the root washing water, by means of ascending flux anaerobic digesters, with separation of the phases, without temperature control or addition of chemical products and to evaluate its suitability by means of its physical and chemical characteristics for throwing in receiving body, public sewage system or application in fertilization and irrigation. After reactors had been stabilized, essays were conducted varying feeding flow with 8.0, 12.0 and 16.0 Ld-1 corresponding to a hydraulic retention time of 8.17, 5.44 and 4.08 days, respectively. The best reduction for organic load reduction were obtained with hydraulic retention times (HRT) of 8.17 and 5.44 days with mean efficiencies of 89.8 and 90.9%, respectively.
Resumo:
The purpose of this work is the deposition of films in order to increase the corrosion resistance of AISI 304 steel, which is a material used to construct the reactors for bioethanol production. This deposition inhibits the permeation of corrosive species to the film-metal interface. Thin films were prepared by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) method using plasmas of hexamethyldisiloxane/argon/oxygen mixtures excited by signals of different powers. The plasma was generated by the application of RF power of 13.56 MHz to the sample holder while keeping grounded the topmost electrode and the chamber walls. The effect of the RF power on the properties of the samples was investigated by perfilometry, X-ray photoelectron spectroscopy (XPS), contact angle, and electrochemical impedance spectroscopy (EIS). The results of the corrosion resistance tests of the AISI 304 steel were interpreted in terms of the energy delivered to the growing layer by plasma excitation power.
Resumo:
The main article aim was to investigate the collecting system of a dissolved air flotation (DAF) unit in pilot scale. Referring to the collecting system position, two options were analyzed: (i) top manifold and (ii) bottom manifold, pipes or plates. Qualitative and quantitative essays were performed, as image and stimulusresponse tests, respectively. The results of the essays standardized were adjusted by N-continuous stirred tank reactors in series and theoretical models of dispersion (low and high). The bottom manifold (plates with orifices) was more appropriate. The results pointed out that the N-continuous stirred tank reactors in series model was more adequate to describe the hydrodynamic behavior of the DAF unit.
Resumo:
In some operational circumstances a fast evaluation of landfill leachate anaerobic treatability is necessary, and neither Biochemical Methane Potential nor BOD/COD ratio are fast enough. Looking for a fast indicator, this work evaluated the anaerobic treatability of landfill leachate from São Carlos-SP (Brazil) in a pilot scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was conducted at ambient temperature in the landfill area. After the acclimation, at a second stage of operation, the AnSBBR presented efficiency above 70%, in terms of COD removal, utilizing landfill leachate without water dilution, with an inlet COD of about 11,000 mg.L-1, a TVA/COD ratio of approximately 0.6 and reaction time equal to 7 days. To evaluate the landfill leachate biodegradability variation over time, temporal profiles of concentration were performed in the AnSBBR. The landfill leachate anaerobic biodegradability was verified to have a direct and strong relationship to the TVA/COD ratio. For a TVA/CODTotal ratio lower than 0.20, the biodegradability was considered low, for ratios between 0.20 and 0.40 it was considered medium, and above 0.40 it was considered high.
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Despite having a very low incidence of disease, reindeer (Rangifer tarandus) are subject to tuberculosis (TB) testing requirements for interstate shipment and herd accreditation in the United States. Improved TB tests are desperately needed, as many reindeer are falsely classified as reactors by current testing procedures. Sera collected sequentially from 11 (experimentally) Mycobacterium bovis-infected reindeer and 4 noninfected reindeer were evaluated by enzyme-linked immunosorbent assay (ELISA), immunoblotting, and multiantigen print immunoassay (MAPIA) for antibody specific to M. bovis antigens. Specific antibody was detected as early as 4 weeks after challenge with M. bovis. By MAPIA, sera were tested with 12 native and recombinant antigens, which were used to coat nitrocellulose. All M. bovis-infected reindeer developed responses to MPB83 and a fusion protein, Acr1/MPB83, and 9/11 had responses to MPB70. Other antigens less commonly recognized included MPB59, ESAT-6, and CFP10. Administration of purified protein derivatives for skin testing boosted serum antibody responses, as detected by each of the assays. Of the noninfected reindeer, 2/4 had responses that were detectable immediately following skin testing, which correlated with pathological findings (i.e., presence of granulomatous lesions yet the absence of acid-fast bacteria). The levels of specific antibody produced by infected reindeer appeared to be associated with disease progression but not with cell-mediated immunity. These findings indicate that M. bovis infection of reindeer elicits an antibody response to multiple antigens that can be boosted by skin testing. Serological tests using carefully selected specific antigens have potential for early detection of infections in reindeer.
Resumo:
The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of similar to 100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.
Resumo:
The aim of this work was to identify groups of microorganisms that are capable of degrading organic matter utilizing sulfate as an electron acceptor. The assay applied for this purpose consisted of running batch reactors and monitoring lactate consumption, sulfate reduction and sulfide production. A portion of the lactate added to the batch reactors was consumed, and the remainder was converted into acetic, propionic and butyric acid after 111 hours of operation These results indicate the presence of sulfate-reducing bacteria (SRB) catalyzing both complete and incomplete oxidation of organic substrates. The sulfate removal efficiency was 49.5% after 1335 hours of operation under an initial sulfate concentration of 1123 mg/L. The SRB concentrations determined by the most probable number (MPN) method were 9.0x10(7) cells/mL at the beginning of the assay and 8.0x10(5) cells/mL after 738 hours of operation.
Resumo:
The objective of the present study was to compare the performance of three serological tests for diagnosis of Brucella abortus infections in buffaloes (Bubalus bubalis). Serum samples collected from 696 adult females were submitted to the competitive enzyme-linked immunosorbent assay (ELISAC), (I-ELISA), fluorescence polarization test (FPA), 2-mercaptoethanol test (2-ME) and complement fixation test (CFT). The gold standard was the combination of CFT and 2-ME, considering as positive the reactors in both CFT and 2-ME, and as negative those non-reactors. ROC analyses were done for C-ELISA, I-ELISA and FPA and the Kappa agreement index were also calculated. The best combinations of relative sensitivity (SEr) and relative specificity (SPr) and Kappa were given by C-ELISA (96.9%, 99.1%, and 0.932, respectively) and FPA (92.2%, 97.6 and 0.836, respectively). The C-ELISA and FPA were the most promising confirmatory tests for the serological diagnosis of brucellosis in buffaloes, and for these tests, cut-off values for buffaloes may be the same as those used for bovines.
Resumo:
The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in Sao Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg(-1) dry soil), during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.
Resumo:
The theoretical E-curve for the laminar flow of non-Newtonian fluids in circular tubes may not be accurate for real tubular systems with diffusion, mechanical vibration, wall roughness, pipe fittings, curves, coils, or corrugated walls. Deviations from the idealized laminar flow reactor (LFR) cannot be well represented using the axial dispersion or the tanks-in-series models of residence time distribution (RTD). In this work, four RTD models derived from non-ideal velocity profiles in segregated tube flow are proposed. They were used to represent the RTD of three tubular systems working with Newtonian and pseudoplastic fluids. Other RTD models were considered for comparison. The proposed models provided good adjustments, and it was possible to determine the active volumes. It is expected that these models can be useful for the analysis of LFR or for the evaluation of continuous thermal processing of viscous foods.
Resumo:
The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 gL(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 gL(-1) showed satisfactory H-2 production performance, but the reactor fed with 25 gL(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 gL(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 gL(-1). The AFBRs operated with glucose concentrations of 2 and 4 gL(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.