934 resultados para Rat-brain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The natriuretic peptide precursor A (Nppa) and B (Nppb) genes are candidate genes for hypertension and cardiac hypertrophy in the spontaneously hypertensive rat (SHR). The purpose of the present study was to determine the role of the Nppa and Nppb genes in the development of hypertension in the SHR. 2. A cohort (n = 162) of F2 segregating intercross animals was established between strains of hypertensive SHR and normotensive Wistar-Kyoto rats. Blood pressure and heart weight were measured in each rat at 12-16 weeks of age. Rats were genotyped using 11 informative microsatellite markers, distributed in the vicinity of the Nppa marker on rat chromosome 5 including an Nppb marker. The phenotype values were compared with genotype using the computer package MAP-MAKER 3.0 (Whitehead Institute, Boston, MA, USA) to determine whether there was a link between the genetic variants of the natriuretic peptide family and blood pressure or cardiac hypertrophy. 3. A strong correlation was observed between the Nppa marker and blood pressure. A quantitative trait locus (QTL) for blood pressure on chromosome 5 was identified between the Nppa locus and the D5Mgh15 marker, less than 2 cM from the Nppa locus. The linkage score for the blood pressure QTL on chromosome 5 was 3.8 and the QTL accounted for 43% of the total variance of systolic blood pressure, 54% of diastolic blood pressure and 59% of mean blood pressure. No association was found between the Nppb gene and blood pressure. This is the first report of linkage between the Nppa marker and blood pressure in the rat. There was no correlation between the Nppa or Nppb genes or other markers in this region and either heart weight or left ventricular weight in F2 rats. 4. These findings suggest the existence of a blood pressure-dependent Nppa marker variant or a gene close to Nppa predisposing to spontaneous hypertension in the rat. It provides a strong foundation for further detailed genetic studies in congenic strains, which may help to narrow down the location of this gene and lead to positional cloning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although neural progenitor cells (NPCs) may provide a source of new neurons to alleviate neural trauma, little is known about their electrical properties as they differentiate. We have previously shown that single NPCs from the adult rat hippocampus can be cloned in the presence of heparan sulphate chains purified from the hippocampus, and that these cells can be pushed into a proliferative phenotype with the mitogen FGF2 [Chipperfield, H., Bedi, K.S., Cool, S.M. & Nurcombe, V. (2002) Int. J. Dev. Biol., 46, 661-670]. In this study, the active and passive electrical properties of both undifferentiated and differentiated adult hippocampal NPCs, from 0 to 12 days in vitro as single-cell preparations, were investigated. Sparsely plated, undifferentiated NPCs had a resting membrane potential of approximate to -90 mV and were electrically inexcitable. In > 70%, ATP and benzoylbenzoyl-ATP evoked an inward current and membrane depolarization, whereas acetylcholine, noradrenaline, glutamate and GABA had no detectable effect. In Fura-2-loaded undifferentiated NPCs, ATP and benzoylbenzoyl-ATP evoked a transient increase in the intracellular free Ca2+ concentration, which was dependent on extracellular Ca2+ and was inhibited reversibly by pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS), a P2 receptor antagonist. After differentiation, NPC-derived neurons became electrically excitable, expressing voltage-dependent TTX-sensitive Na+ channels, low- and high-voltage-activated Ca2+ channels and delayed-rectifier K+ channels. Differentiated cells also possessed functional glutamate, GABA, glycine and purinergic (P2X) receptors. Appearance of voltage-dependent and ligand-gated ion channels appears to be an important early step in the differentiation of NPCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphine withdrawal is characterized by physical symptoms and a negative affective state. The 41 amino acid polypeptide corticotropin-releasing, hormone (CRH) is hypothesized to mediate, in part, both the negative affective state and the physical withdrawal syndrome. Here, by means of dual-immunohistochemical methodology, we examined the co-expression of the c-Fos protein and CRH following naloxone-precipitated morphine withdrawal. Rats were treated with slow-release morphine 50 mg/kg (subcutaneous, s.c.) or vehicle every 48 It for 5 days, then withdrawn with naloxone 5 mg/kg (s.c.) or saline 48 h after the final morphine injection. Two hours after withdrawal rats were perfused transcardially and their brains were removed and processed for immunohistochemistry. We found that naloxone-precipitated withdrawal of morphine-dependent rats increased c-Fos immunoreactivity (IR) in CRH positive neurons in the paraventricular hypothalamus. Withdrawal of morphine-dependent rats also increased c-Fos-IR in the central amygdala and bed nucleus of the stria terminalis. however these were in CRH negative neurons. (C) 2004 Published by Elsevier Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1beta, or air puff. The D-1 antagonist, SCH23390, and the D-2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary olfactory neurons project axons from the olfactory neuroepithelium lining the nasal cavity to,the olfactory bulb in the brain. These axons grow within large mixed bundles in the olfactory nerve and then sort out into homotypic fascicles in the nerve fiber layer of the olfactory bulb before terminating in topographically fixed glomeruli. Carbohydrates expressed on the cell surface have been implicated in axon sorting within the nerve fiber layer. We have identified two novel subpopulations of primary olfactory neurons that express distinct alpha-extended lactoseries carbohydrates recognised by monoclonal antibodies LA4 and KH10. Both carbohydrate epitopes are present on novel glycoforms of the neural cell adhesion molecule, which we have named NOC-7 and NOC-8. Primary axon fasciculation is disrupted in vitro when interactions between these cell surface lactoseries carbohydrates and their endogenous binding molecules are inhibited by the LA4 and KH10 antibodies or lactosamine sugars. We report the expression of multiple members of the lactoseries binding galectin family in the primary olfactory system. In particular, galectin-3 is expressed by ensheathing cells surrounding nerve fascicles in the submucosa and nerve fiber layer, where it may mediate cross-linking of axons. Galectin-4, -7, and -8 are expressed by the primary olfactory axons as they grow from the nasal cavity to the olfactory bulb. A putative role for NOC-7 and NOC-8 in axon fasciculation and the expression of multiple galectins in the developing olfactory nerve suggest that these molecules may be involved in the formation of this pathway, particularly in the sorting of axons as they converge towards their target. (C) 2004Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by phosphate, thiosulfate, tungstate, selenate, oxalate, and molybdate, but not by citrate, succinate, or DIDS. Transport kinetics of rNaS2 determined a K-M for sulfate of 1.26 mM. Na+ kinetics determined a Hill coefficient of n=3.0 +/- 0.7, suggesting a Na+:SO42- stoichiometry of 3:1. rNaS2 mRNA was highly expressed in placenta, with lower levels found in the brain and liver. slc13a4 maps to rat chromosome 4 and contains 17 exons, spanning over 46 kb in length. This gene produces two alternatively spliced transcripts, of which the transcript lacking exon 2 is the most abundant form. Its 5' flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, SP1, and AP-2 consensus sequences. This is the first study to characterize rNaS2 transport kinetics, define its tissue distribution, and resolve its gene (slc13a4) structure and 5' flanking region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developmental vitamin D deficiency (DVD) has been shown to alter the orderly pattern of brain development. Even though the period of vitamin D deficiency is restricted to gestation this is sufficient to induce behavioural abnormalities in the adult offspring consistent with those seen in many animal models of schizophrenia. Given that some of these behavioural alterations could also be an indirect result of either impaired maternal hypothalamic pituitary axis (HPA) function (which in turn could influence maternal care) or the result of a permanent alteration in HPA function in the adult offspring we have examined HPA status in both maternal animals and adult offspring. In this study we have established that HPA function is normal in the maternally vitamin D deficient rat. We replicate the behavioural phenotype of hyperlocomotion whilst establishing that HPA function is also unchanged in the adult mate offspring. We conclude that the behavioural alterations induced by DVD deficiency are due to some adverse event in brain development rather than via an alteration in stress response. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to determine antipsychotic doses that achieve 80% striatal doparnine D-2-receptor occupancy for haloperidol, risperidone and olanzapine in rats. Wistar rats were treated with normal saline vehicle (controls), haloperidol (0.25 and 0.5 mg/kg/ day), risperidone (3, 5 and 6 mg/kg/day) and olanzapine (5 and 10 mg/kg/day) for 7 days via osmotic minipumps. Striatal and cerebellar tissue were collected and in vivo dopamine D2-receptor occupancies were determined using H-3-raclopride. The doses required to achieve dopamine D-2-receptor occupancy of 80% in 11- and 24-week old rats were: haloperidol 0.25 mg/kg/day, risperidone 5 mg/kg/day and olanzapine 10 mg/kg/day. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the effects of ethanol on glutamate receptor levels in the hippocampus of neonatal Wistar rats using a vapor chamber model. Two control groups were used; a normal suckle group and a maternal separation group. Levels of NMDA receptors were not significantly altered in ethanol-treated animals compared to the normal suckle control group, as shown by [H-3]MK-801 binding and Western blot analysis. However, MK-801 binding and NR1 subunit immunoreactivity were greatly reduced in the hippocampus of separation control animals. Neither ethanol treatment nor maternal separation altered levels of GluR1 or GluR2(4). These results have serious implications for the importance of maternal contact for normal brain development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is becoming clear that the detection and integration of synaptic input and its conversion into an output signal in cortical neurons are strongly influenced by background synaptic activity or "noise." The majority of this noise results from the spontaneous release of synaptic transmitters, interacting with ligand-gated ion channels in the postsynaptic neuron [Berretta N, Jones RSG (1996); A comparison of spontaneous synaptic EPSCs in layer V and layer II neurones in the rat entorhinal cortex in vitro. J Neurophysiol 76:1089-1110; Jones RSG, Woodhall GL (2005) Background synaptic activity in rat entorhinal cortical neurons: differential control of transmitter release by presynaptic receptors. J Physiol 562:107-120; LoTurco JJ, Mody I, Kriegstein AR (1990) Differential activation of glutamate receptors by spontaneously released transmitter in slices of neocortex. Neurosci Lett 114:265-271; Otis TS, Staley KJ, Mody I (1991) Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 545:142-150; Ropert N, Miles R, Korn H (1990) Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. J Physiol 428:707-722; Salin PA, Prince DA (1996) Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 75:1573-1588; Staley KJ (1999) Quantal GABA release: noise or not? Nat Neurosci 2:494-495; Woodhall GL, Bailey SJ, Thompson SE, Evans DIP, Stacey AE, Jones RSG (2005) Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus 15:232-245]. The function of synaptic noise has been the subject of debate for some years, but there is increasing evidence that it modifies or controls neuronal excitability and, thus, the integrative properties of cortical neurons. In the present study we have investigated a novel approach [Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884-2896] to simultaneously quantify synaptic inhibitory and excitatory synaptic noise, together with postsynaptic excitability, in rat entorhinal cortical neurons in vitro. The results suggest that this is a viable and useful approach to the study of the function of synaptic noise in cortical networks. © 2007 IBRO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ßElucidating some molecular mechanisms and biochemistry of brain tumours is an important step towards the development of adjuvant medical therapies. The present study concentrates on cholecystokinin (CCK), a gut-brain peptide that has been described to be able to induce mitosis of rat gliomas as well as hormone secretion by the anterior pituitary, via the CCK-B receptor. The significance of a polymorphism in the growth hormone releasing hormone (GHRH) receptor (GHRH-R) gene was also determined. Finally, defects in the ß-catenin gene, an important component of the developmental pathway, in a sub-set of craniopharyngiomas were investigated. Reverse transcription-polymerase chain reaction (RT-PCR), restriction digestion analysis and direct sequencing demonstrated expression of CCK peptide itself and its A and B receptors by human gliomas, meningiomas and pituitary tumours. CCK peptides stimulated growth of cultured gliomas and meningiomas as well as in vitro hormone secretion [growth hormone (GH), luteinizing hormone (LH) and follicle stimulating hormone (FSH)] by human pituitary tumours. These biological effects were reduced or abolished by CCK antagonists. In addition, an antibody to CCK reduced mitosis by gliomas and meningiomas, and the same antibody inhibited hormone secretion by cultured human pituitary tumours. CCK peptides stimulated phosphatidylinositol (PI) hydrolysis, indicating coupling of the CCK receptors to phopsholipase C. Cyclic AMP was unaffected. In addition, caspase-3 activity was significantly and markedly increased, whilst proteasome activity was decreased. Taken together, these results may indicate an autocrine/paracrine role of CCK in the control of growth and/or functioning of gliomas, meningiomas and pituitary tumours. Primer induced restriction analysis (PIRA) of a rarer and alternative polymorphism in the GHRH-R receptor, in which Thr replaces Ala at codon 57, in human GH-secreting pituitary tumours was investigated. Whilst the rarer form correlated with an increased response of the pituitary cells to GHRH in vitro, allele distribution studies revealed that it is unlikely that the polymorphism contributes to increased risk of developing GH-secreting tumours and therefore acromegaly. Further findings of this study, using PCR and direct sequencing, were the demonstration of an association between b-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that p-catenin mutations may contribute to the initiation and subsequent growth of congenital adamantinomatous craniopharyngiomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs) at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC) neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500?nM), increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entorhinal cortex (EC) is a key brain area controlling both hippocampal input and output via neurones in layer II and layer V, respectively. It is also a pivotal area in the generation and propagation of epilepsies involving the temporal lobe. We have previously shown that within the network of the EC, neurones in layer V are subject to powerful synaptic excitation but weak inhibition, whereas the reverse is true in layer II. The deep layers are also highly susceptible to acutely provoked epileptogenesis. Considerable evidence now points to a role of spontaneous background synaptic activity in control of neuronal, and hence network, excitability. In the present article we describe results of studies where we have compared background release of the excitatory transmitter, glutamate, and the inhibitory transmitter, GABA, in the two layers, the role of this background release in the balance of excitability, and its control by presynaptic auto- and heteroreceptors on presynaptic terminals. © The Physiological Society 2004.