944 resultados para Rare earth ions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the diagenetic behavior of rare earth elements (REEs) in a highly productive passive margin setting of the Bering Sea Slope. Site U1345 was drilled during the Integrated Ocean Drilling Program Expedition 323 at a water depth of 1008 m currently in the center of an oxygen minimum zone. Pore water concentrations of fourteen REEs were determined down to ~ 140 meters below the seafloor (mbsf). The REE concentrations were higher in the pore water than the deep seawater, indicating that there was significant liberation from the sediments during diagenesis. There was a major peak at ~ 10 mbsf that was more pronounced for the heavy REE (HREE); this peak occurred below the sulfate-methane transition zone (6.3 mbsf) and coincided with high concentrations of dissolved iron and manganese. At ~ 2 mbsf, there was a minor peak in REE and Mn contents. Below ~ 40 mbsf, the REE concentration profiles remained constant. The Ce anomaly was insignificant and relatively constant (PAAS-normalized Ce/Ce = 1.1 ± 0.2) throughout the depth profile, showing that the Ce depleted in seawater was restored in the pore water. HREE-enrichment was observed over the entire 140 m except for the upper ~ 1 m, where a middle REE (MREE)-bulge was apparent. REE release in shallow depths (2-4 mbsf) is attributed to the release of light REEs (LREEs) and MREEs during the organoclastic reduction of Mn oxides in anoxic sediments. The high HREE concentrations observed at ~ 10 mbsf can be attributed to the reduction of Fe and Mn minerals tied to anaerobic oxidation of methane or, less significantly, to ferromagnesian silicate mineral weathering. The upward diffusion flux across the sediment-water interface was between 3 (for Tm) and 290 (for Ce) pmol/m**2/y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.

Relevância:

100.00% 100.00%

Publicador: