931 resultados para RNA 12S


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic RNAs, especially siRNAs, are a promising approach for treating diseases like cancer, neurodegenerative disorders and viral infections. Their application, however, is limited due to a lack of safe and efficient delivery systems. Nanosized carriers with the ability to either complex or entrap RNA species are a promising option. rn rn rnSuch a carrier has to meet a lot of requirements, some of which are even partly contradictive. Understanding and controlling the interplay between the different demands would advance a strategic design at an early stage of therapeutic development. rn rn This work is centered around a systematic evaluation of polyplexes, such carriers that are able to complex siRNA due to electrostatic interactions. Six structurally and chemically diverse candidates, poly-L-lysine brushes, block copolymers, cationic peptides, cationic lipids, nanohydrogels, and manganese oxide particles, were tested in a simultaneous fashion. The assays, mostly based on fluorescently labeled siRNA, ranged from the evaluation of polyplex formation and stability to in vitro parameters like cellular uptake and knockdown capability. The analysis from several perspectives offered insight into the interplay between the specifications of one polyplex. Assessing the different carriers under exactly the same experimental conditions also allowed conclusions about favourable traits and starting points for further optimization. This comparative approach also revealed weaknesses of some of the conventional protocols, which were therefore contrasted with alternative methods. In addition, in vitro knockdown assays were optimized and the impact of fluorescently labeled siRNA on knockdown efficiency was assessed. rn rn rn A second class of carriers, which share the ability to entrap siRNA inside their matrix, are briefly addressed. Nanocapsules, dextran particles and liposomes were assessed for basic features like siRNA encapsulation and knockdown capability. rn rn rn rn In an approach towards targeted delivery of RNA, liposomes were endowed with mitochondriotropic tags. Despite successful functionalization, no colocalization between the liposomal cargo and mitochondria was so far observed, which makes further optimization necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNAi ist ein bedeutendes Werkzeug zur Funktionsanalyse von Genen und hat großes Potential für den Einsatz in der Therapie. Obwohl effiziente Knockdowns in der Zellkultur erzielt werden, erweist sich eine in vivo Anwendung als schwierig. Die großen Hürden sind dabei der Transport der siRNA ins Zielgewebe und deren voranschreitende Degradierung.rnMarkierte siRNA kann sowohl zur eigenen Integritätsmessung als auch zur Lokalisierung verwendet werden. Zwei Farbstoffe an den jeweiligen 3’- bzw. -5’-Enden des Sense- bzw. Antisense-Stranges erzeugen ein robustes FRET-System (Hirsch et al. 2012). Das Verhältnis von FRET- zu Donor-Signal, das R/G-Ratio, dient zur sensitiven Klassifizierung des Integritätslevels einer siRNA Probe (Järve et al. 2007; Hirsch et al. 2011; Kim et al. 2010). Mit diesem System kann eine Degradierung von weniger als 5 % in der Küvette und in Zellen nachgewiesen werden.rnDie vorliegende Arbeit beschäftigt sich mit der Evaluierung von potentiellen FRET Farbstoffpaaren hinsichtlich deren Eignung für in vitro und in vivo Anwendung. Verschiedenste FRET-Paare, die das gesamte sichtbare Spektrum abdecken, wurden evaluiert und ermöglichen nun die Auswahl eines geeigneten Paares für die jeweilige Anwendung oder Kombination mit anderen Farbstoffen.rnMit Hilfe von Alexa555/Atto647N siRNA wurde ein erfolgreicher Einschluss von siRNA in Liposomen beobachtet. Eine anschließende Evaluierung der RNase-Protektion ergab für Liposomen, Nanohydrogele und kationische Peptide hervorragende protektive Eigenschaften. Basierend auf den Ergebnisse können diese und andere Transportsysteme nun für eine zelluläre Aufnahme optimiert werden.rnAtto488/Atto590 zeigte die besten Eigenschaften für Echtzeit-Integritätsmessungen in der Lebendzellmikroskopie. Verringerte Bleicheigenschaften und minimaler spektraler “Cross-Talk” ermöglichten es, transfizierte Zellen über einen Zeitraum von bis zu 8 Stunden zu beobachten. Mittels Atto488/Atto590 siRNA wurde die Einschleusung und Freisetzung in Zellen in Echtzeit untersucht. Dabei konnten Freisetzung und Verteilung in einzelnen Zellen beobachtet und analysiert werden. rnAuf eine anfängliche Phase mit hoher Freisetzungsrate folgte eine Phase mit geringerer Rate für den restlichen Beobachtungszeitraum. Die durchschnittliche Verweildauer im Zytosol betrug 24 und 58 Minuten, wobei zwischen lang- und kurzanhaltenden Ereignissen unterschieden werden konnte. Obwohl ein Import von siRNA in den Zellkern beobachtet wurde, konnte kein Schema bzw. genauer Zeitpunkt, in Bezug auf den Transfektionszeitraum für diese Ereignisse bestimmt werden. Die beobachteten Freisetzungsprozesse fanden sporadisch statt und Änderungen in der zellulären Verteilung geschahen innerhalb von wenigen Minuten. Einmal freigesetzte siRNA verschwand mit der Zeit wieder aus dem Zytosol und es blieben nur kleine Aggregate von siRNA mit immer noch geringer Integrität zurück.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to establish a method for repeated transfection of in vitro transcribed RNA (IVT-RNA) leading to a sustained protein expression lasting for days or even weeks. Once transfected cells recognize IVT-RNA as "non-self" and initiate defense pathways leading to an upregulated interferon (IFN) response and stalled translation. In this work Protein Kinase R (PKR) was identified as the main effector molecule mediating this cellular response. We assessed four strategies to inhibit PKR and the IFN response: A small molecule PKR inhibitor enhanced protein expression and hampered the induction of IFN-transcripts, but had to be excluded due to cytotoxicity. A siRNA mediated PKR knockdown and the overexpression of a kinase inactive PKR mutant elevated the protein expression, but the down-regulation of the IFN response was insufficient. The co-transfer of the viral inhibitors of PKR and the IFN response was most successful. The use of E3, K3 and B18R co-transfection enabled repeated IVT-RNA-based transfection of human fibroblasts. Thus, the developed protocol allows a continuous IVT-RNA encoded protein expression of proteins, which could be the basis for the generation of induced pluripotent stem cells (iPS) for several therapeutic applications in regenerative medicine or drug research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the work reported here is to test reliable molecular profiles using routinely processed formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-up of 60 months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. Aims To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. Methods T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-γ-ELISpot responses to HCV core peptides, that predominantly stimulate CD4+ T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. Results The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log10 IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (−0.3 log10 IU/ml, p=0.02). Conclusions Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, few areas of biology have been transformed as thoroughly as RNA molecular biology. Without any doubt, one of the most significant advances has been the discovery of small (20-30 nucleotide) noncoding RNAs that regulate genes and genomes. The effects of small RNAs on gene expression and control are generally inhibitory, and the corresponding regulatory mechanisms are therefore collectively subsumed under the heading of RNA silencing and/or RNA interference. Two primary categories of these small RNAs - short interfering RNAs (siRNAs) and microRNAs (miRNAs) - act in both somatic and germline lineages of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA and miRNA-based regulation has direct implications for fundamental biology as well as disease aetiology and treatment as it is discussed in this review on 'new techniques in molecular biology'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the novel synthesis of two sugar units that are central intermediates for the formation of members of the bicyclo-DNA and -RNA family. The synthesis starts from commercially available 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose. The key step involves the elaboration of a carbocyclic ring in a furanoside by rhodium(I)-catalyzed hydroacylation. Via this pathway, one of the sugar units is available in 8 steps and in an overall yield of 27%, while its deoxy derivative is obtained in 11 steps, which is 5 steps fewer than in our previous synthesis of this compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA editing in kinetoplastid protozoa is a post-transcriptional process of uridine insertion or deletion in mitochondrial mRNAs. The process involves two RNA species, the pre-edited mRNA and in most cases a trans-acting guide RNA (gRNA). Sequences within gRNAs define the position and extend of mRNA editing. Both mRNAs and gRNAs are encoded by mitochondrial genes in the kinetoplast DNA (kDNA), which consists of thousands of small circular DNA molecules, called minicircles, encoding thousands of gRNAs, catenated together and with a few mRNA encoding larger circles, the maxicircles, to form a huge DNA network. Editing has been shown to result in translatable mRNAs of bona fide mitochondrial genes as well as novel alternatively edited transcripts that are involved in the maintenance of the kDNA itself. RNA editing occurs within large protein-RNA complexes, editosomes, containing gRNA, preedited and partially edited mRNAs and also structural and catalytically active proteins. Editosomes are diverse in both RNA and protein composition and undergoe structural remodeling during the maturation. The compositional and structural diversity of editosomes further underscores the complexity of the RNA editing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early initiation of combination antiretroviral therapy (ART) during primary HIV-1 infection may prevent the establishment of large viral reservoirs, possibly resulting in improved control of plasma viraemia rebound after ART cessation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medulloblastoma is the most common malignant brain tumor in children and is associated with a poor outcome. We were interested in gaining further insight into the potential of targeting the human kinome as a novel approach to sensitize medulloblastoma to chemotherapeutic agents. A library of small interfering RNA (siRNA) was used to downregulate the known human protein and lipid kinases in medulloblastoma cell lines. The analysis of cell proliferation, in the presence or absence of a low dose of cisplatin after siRNA transfection, identified new protein and lipid kinases involved in medulloblastoma chemoresistance. PLK1 (polo-like kinase 1) was identified as a kinase involved in proliferation in medulloblastoma cell lines. Moreover, a set of 6 genes comprising ATR, LYK5, MPP2, PIK3CG, PIK4CA, and WNK4 were identified as contributing to both cell proliferation and resistance to cisplatin treatment in medulloblastoma cells. An analysis of the expression of the 6 target genes in primary medulloblastoma tumor samples and cell lines revealed overexpression of LYK5 and PIK3CG. The results of the siRNA screen were validated by target inhibition with specific pharmacological inhibitors. A pharmacological inhibitor of p110γ (encoded by PIK3CG) impaired cell proliferation in medulloblastoma cell lines and sensitized the cells to cisplatin treatment. Together, our data show that the p110γ phosphoinositide 3-kinase isoform is a novel target for combinatorial therapies in medulloblastoma.