960 resultados para REDUCTION REACTION
Resumo:
The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.
Resumo:
This paper shows that traffic hysteresis, a manifestation of driver characteristics, has a profound impact on the development of traffic oscillations and the bottleneck discharge rate. Findings suggest that aggressive driver behavior (with small response times and jammed spacing) leads to spontaneous formations of stop-and-go disturbances. Furthermore, the aggressive behavior, coupled with a late response to adopt less aggressive behavior, generates large hysteresis that leads to oscillations’ transformation from localized to substantial disturbances and growth. The larger the magnitude of hysteresis is, the larger the growth is. Our finding also suggests that the bottleneck discharge rate can diminish by 8-23% when driver adopts a less aggressive reaction to a disturbance (characterized by a larger response time). This finding is particularly notable since lane-changes have been believed to be the major cause of a reduction in bottleneck discharge rate.
Resumo:
Purpose: This randomized, multicenter trial compared first-line trastuzumab plus docetaxel versus docetaxel alone in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC). Patients and Methods: Patients were randomly assigned to six cycles of docetaxel 100 mg/m 2 every 3 weeks, with or without trastuzumab 4 mg/kg loading dose followed by 2 mg/kg weekly until disease progression. Results: A total of 186 patients received at least one dose of the study drug. Trastuzumab plus docetaxel was significantly superior to docetaxel alone in terms of overall response rate (61% v 34%; P = .0002), overall survival (median, 31.2 v 22.7 months; P = .0325), time to disease progression (median, 11.7 v 6.1 months; P = .0001), time to treatment failure (median, 9.8 v 5.3 months; P = .0001), and duration of response (median, 11.7 v 5.7 months; P = .009). There was little difference in the number and severity of adverse events between the arms. Grade 3 to 4 neutropenia was seen more commonly with the combination (32%) than with docetaxel alone (22%), and there was a slightly higher incidence of febrile neutropenia in the combination arm (23% v 17%). One patient in the combination arm experienced symptomatic heart failure (1%). Another patient experienced symptomatic heart failure 5 months after discontinuation of trastuzumab because of disease progression, while being treated with an investigational anthracycline for 4 months. Conclusion: Trastuzumab combined with docetaxel is superior to docetaxel alone as first-line treatment of patients with HER2-positive MBC in terms of overall survival, response rate, response duration, time to progression, and time to treatment failure, with little additional toxicity. © 2005 by American Society of Clinical Oncology.
Resumo:
Background A public health intervention program with active involvement of local related stakeholders was piloted in the Bien Hoa dioxin hot spot (2007-2009), and then expanded to the Da Nang dioxin hot spot in Vietnam (2009-2011). It aimed to reduce the risk of dioxin exposure through foods for local residents. This article presents the results of the intervention in Da Nang. Methodology To assess the results of this intervention program, pre-intervention and post-intervention knowledge-attitude-practice (KAP) surveys were implemented in 400 households, randomly selected from four wards surrounding Da Nang Airbase in 2009 and 2011, respectively. Results After the intervention, the knowledge on the existence of dioxin in food, dioxin exposure pathways, potential high risk foods and preventive measures significantly increased (p < 0.05). 98% were willing to follow advice on preventing dioxin exposure. Practices to reduce the risk of dioxin exposure also statistical significantly improved (p<0.05). After intervention, 60.4% of households undertook exposure preventive measures, significantly higher than that of the pre-intervention survey (39.6%; χ2 =40.15 , P<0.001). High risk foods had quite low rates of daily consumption (from 0% to 2.5%) and were significantly reduced (p<0.05). Conclusions This is seen as an effective intervention strategy toward reducing the risk of human exposure to dioxin at dioxin hot spots. While greater efforts are needed for remediating dioxin polluted areas inside airbases, there is also evidence to suggest that, during the past four decades, pollution has been expanding to the surrounding areas. For this reason, this model should be quickly expanded to the remaining dioxin hot spots in Vietnam to further reduce the exposure risk in these areas.
Resumo:
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Resumo:
Background Lower extremity amputation is a common end stage complication among people with diabetes. Since 2006, the Queensland Diabetes Clinical Network has implemented programs aimed at reducing diabetes-related amputations. The aim of this retrospective observational study was to determine the incidence of diabetes lower extremity amputations in Queensland from 2005 to 2010. Methods Data on all Queensland diabetes-related lower extremity amputation admissions from 2005-2010 was obtained using diabetes amputation-related ICD-10-AM (hospital discharge) codes. Queensland diabetes amputation incidences were calculated for both general and diabetes populations using population data from the Australian Bureau of Statistics and National Diabetes Services Scheme respectively. Chi-squared tests were used to assess changes in amputation incidence over time. Results Overall, 4,443 admissions for diabetes-related amputation occurred; 32% (1,434) were major amputations. The diabetes-related amputation incidence among the general population (per 100,000) reduced by 18% (18.2 in 2005, to 15.0 in 2010, p < 0.001); major amputations decreased by 24% (6.6 to 4.7, p < 0.01). The incidence among the diabetes population (per 1,000) reduced by 40% (6.7 in 2005, to 4.0 in 2010, p < 0.001); major amputations decreased by 45% (2.3 to 1.2, p < 0.001). Conclusion This paper appears to be the first to report a significant reduction in diabetes amputation incidence in an Australian state. This decrease has coincided with the implementation of several diabetes foot clinical programs throughout Queensland. Whilst these results are encouraging in the Australian context, further efforts are required to decrease to levels reported internationally.
Detection of five seedborne legume viruses in one sensitive multiplex polymerase chain reaction test
Resumo:
According to a study conducted by the International Maritime organisation (IMO) shipping sector is responsible for 3.3% of the global Greenhouse Gas (GHG) emissions. The 1997 Kyoto Protocol calls upon states to pursue limitation or reduction of emissions of GHG from marine bunker fuels working through the IMO. In 2011, 14 years after the adoption of the Kyoto Protocol, the Marine Environment Protection Committee (MEPC) of the IMO has adopted mandatory energy efficiency measures for international shipping which can be treated as the first ever mandatory global GHG reduction instrument for an international industry. The MEPC approved an amendment of Annex VI of the 1973 International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) to introduce a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Considering the growth projections of human population and world trade the technical and operational measures may not be able to reduce the amount of GHG emissions from international shipping in a satisfactory level. Therefore, the IMO is considering to introduce market-based mechanisms that may serve two purposes including providing a fiscal incentive for the maritime industry to invest in more energy efficient manner and off-setting of growing ship emissions. Some leading developing countries already voiced their serious reservations on the newly adopted IMO regulations stating that by imposing the same obligation on all countries, irrespective of their economic status, this amendment has rejected the Principle of Common but Differentiated Responsibility (the CBDR Principle), which has always been the cornerstone of international climate change law discourses. They also claimed that negotiation for a market based mechanism should not be continued without a clear commitment from the developed counters for promotion of technical co-operation and transfer of technology relating to the improvement of energy efficiency of ships. Against this backdrop, this article explores the challenges for the developing counters in the implementation of already adopted technical and operational measures.
Resumo:
International shipping is responsible for about 2.7% of the global emissions of CO2. In the absence of proper action, emissions from the maritime sector may grow by 150% to 250% by 2050, in comparison with the level of emissions in 2007. Against this backdrop, the International Maritime Organisation has introduced a mandatory Energy Efficiency Design Index (EEDI) for new ships and the Ship Energy Efficiency Management Plan (SEEMP) for all ships. Some Asian countries have voiced serious reservations about the newly adopted IMO regulations. They have suggested that imposing the same obligations on all countries, irrespective of their economic status, is a serious departure from the Principle of Common but Differentiated Responsibility, which has always been the cornerstone of international climate change law discourse. Against this backdrop, this article presents a brief overview of the technical and operational measures from the perspective of Asian countries.
Resumo:
In this work the electrochemical formation of porous Cu/Ag materials is reported via the simple and quick method of hydrogen bubble templating. The bulk and surface composition ratio between Ag and Cu was varied in a systematic manner and was readily controlled by the concentration of precursor metal salts in the electrolyte. The incorporation of Ag within the Cu scaffold only affected the formation of well-defined pores at high Ag loading whereas the internal pore wall structure gradually transformed from dendritic to cube like and finally needle like structures, which was due to the concomitant formation of Cu2O within the structure. The materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Their surface properties were further investigated by surface enhanced Raman spectroscopy (SERS) and electrochemically probed by recording the hydrogen evolution reaction (HER) which is highly sensitive to the nature of the surface. The effect of surface composition was then investigated for its influence on two catalytic reactions namely the reduction of ferricyanide ions with thiosulphate ions and the reduction of 4-nitrophenol with NaBH4 in aqueous solution where it was found that the presence of Ag had a beneficial effect in both cases but more so in the case of nitrophenol reduction. It is believed that this material may have many more potential applications in the area of catalysis, electrocatalysis and photocatalysis.
Resumo:
Exploring advanced materials for efficient capture and separation of CO2 is important for CO2 reduction and fuel purification. In this study, we have carried out first-principles density functional theory calculations to investigate CO2, N2, CH4, and H2 adsorption on the amphoteric regioselective B80 fullerene. Based on our calculations, we find that CO2 molecules form strong interactions with the basic sites of the B80 by Lewis acid–base interactions, while there are only weak bindings between the other three gases (N2, CH4, and H2) and the B80 adsorbent. The study also provides insight into the reaction mechanism of capture and separation of CO2 using the electron deficient B80 fullerene.
Resumo:
Bone metastases are severely debilitating and have a significant impact on the quality of life of women with metastatic breast cancer. Treatment options are limited and in order to develop more targeted therapies, improved understanding of the complex mechanisms that lead to bone lesion development are warranted. Interestingly, whilst prostate-derived bone metastases are characterised by mixed or osteoblastic lesions, breast-derived bone metastases are characterised by osteolytic lesions, suggesting unique regulatory patterns. This study aimed to measure the changes in bone formation and bone resorption activity at two time-points (18 and 36 days) during development of the bone lesion following intratibial injection of MDA-MB-231 human breast cancer cells into the left tibiae of Severely Combined Immuno-Deficient (SCID) mice. The contralateral tibia was used as a control. Tibiae were extracted and processed for undecalcified histomorphometric analysis. We provide evidence that the early bone loss observed following exposure to MDA-MB-231 cells was due to a significant reduction in mineral apposition rate, rather than increased levels of bone resorption. This suggests that osteoblast activity was impaired in the presence of breast cancer cells, contrary to previous reports of osteoclast-dependent bone loss. Furthermore mRNA expression of Dickkopf Homolog 1 (DKK-1) and Noggin were confirmed in the MDA-MB-231 cell line, both of which antagonise osteoblast regulatory pathways. The observed bone loss following injection of cancer cells was due to an overall thinning of the trabecular bone struts rather than perforation of the bone tissue matrix (as measured by trabecular width and trabecular separation, respectively), suggesting an opportunity to reverse the cancer-induced bone changes. These novel insights into the mechanisms through which osteolytic bone lesions develop may be important in the development of new treatment strategies for metastatic breast cancer patients.
Resumo:
Aim/Background: Transfusion-related acute lung injury (TRALI) is a potentially fatal adverse transfusion reaction. It is hypothesised to occur via a two-insult mechanism: the recipient’s underlying co-morbidity in addition to the transfusion of blood products activate neutrophils in the lung resulting in damaged endothelium and capillary leakage. Neutrophil activation may occur by antibody or non-antibody related mechanisms, with the length of storage of cellular blood products implicated in the latter. This study investigated non-antibody mediated priming and/or activation of neutrophil oxidative burst. Methods: A cytochrome C reduction assay was used to assess priming and activation of neutrophil oxidative burst by pooled supernatant (SN) from day 1 (D1; n=75) and day 42 (D42; n=113) packed red blood cells (PRBC). Pooled PRBC-SN were assessed in parallel with PAF (priming), fMLP (activating), PAF + fMLP (priming + activating) and buffer only (negative) controls. Cytochrome C reduction was measured over 30min at 37oC (inclusive of 10min priming). Neutrophil activation by PRBC-SN was assessed cf. buffer only and neutrophil priming by PRBC-SN was assessed by co-incubation with fMLP cf. fMLP alone. One-way ANOVA; Newman-Keuls post-test; p<0.05; n=10 independent assays. Results: Neither D1- nor D42- PRBC-SN alone activated neutrophil oxidative burst. In addition, D1-PRBC-SN did not prime fMLP-activated neutrophil oxidative burst. D42-PRBC-SN did, however, prime neutrophils for subsequent activation of oxidative burst by fMLP, the magnitude of response being similar to PAF (a known neutrophil priming agonist). Conclusion: These findings are consistent with the two-insult mechanism of TRALI. Factors released into the SN during PRBC storage contributed to neutrophil priming synergistically with other neutrophil stimulating agonists. This implicates PRBC storage duration as a key factor contributing to non-immune neutrophil activation in the development of TRALI in patients with pre-disposing inflammatory conditions.
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
Aim To test the efficacy of Medilixir [cream] against the standard treatment of aqueous cream in the provision of relief from the symptoms of postburn itch. Design RCT with two parallel arms. Setting Professor Stuart Pegg Adult Burns Centre, Royal Brisbane and Women's Hospital, Brisbane, Australia. Participants Fifty-two patients aged between 18 and 80 years, admitted directly to the burns centre between 10 March and 22 July 2008, were able to provide informed consent, and had shown no allergic reaction to a patch test with the study medication, were randomised. Patients admitted from intensive care or high dependency were excluded. Main results Effect estimates and confidence intervals were not reported for any of the outcomes; only group means/proportions and P-values from hypothesis testing were provided. More patients in the intervention group reported itch reduction compared to comparison treatment (91 vs. 82%, P=0.001). Itch recurrence after cream application occurred later in the intervention group compared to the control group (P<0.001). Use of antipruritic medication was significantly greater in the control group (P=0.023). There was no difference in sleep disturbance between groups (not quantified). On average, Medilixir took longer to apply than aqueous cream (157s for Medilixir vs. 139s for aqueous cream; mean difference 17s), but authors noted that the groups did not differ significantly (CI for mean difference and P-values were not reported).