863 resultados para Public address systems
Resumo:
Modern information systems (ISs) are becoming increasingly complex. Simultaneously, organizational changes are occurring more often and more rapidly. Therefore, emergent behavior and organic adaptivity are key advantages of ISs. In this paper, a design science research (DSR) question for design-oriented information systems research (DISR) is proposed: Can the application of biomimetic principles to IS design result in the creation of value by innovation? Accordingly, the properties of biological IS are analyzed, and these insights are crystallized into a theoretical framework to address the three major aspects of biomimetic ISs: user experience, information processing, and management cybernetics. On this basis, the research question is elaborated together with a starting point for a research methodology in biomimetic information systems.
Resumo:
The growth and proliferation of invasive bacteria in engineered systems is an ongoing problem. While there are a variety of physical and chemical processes to remove and inactivate bacterial pathogens, there are many situations in which these tools are no longer effective or appropriate for the treatment of a microbial target. For example, certain strains of bacteria are becoming resistant to commonly used disinfectants, such as chlorine and UV. Additionally, the overuse of antibiotics has contributed to the spread of antibiotic resistance, and there is concern that wastewater treatment processes are contributing to the spread of antibiotic resistant bacteria.
Due to the continually evolving nature of bacteria, it is difficult to develop methods for universal bacterial control in a wide range of engineered systems, as many of our treatment processes are static in nature. Still, invasive bacteria are present in many natural and engineered systems, where the application of broad acting disinfectants is impractical, because their use may inhibit the original desired bioprocesses. Therefore, to better control the growth of treatment resistant bacteria and to address limitations with the current disinfection processes, novel tools that are both specific and adaptable need to be developed and characterized.
In this dissertation, two possible biological disinfection processes were investigated for use in controlling invasive bacteria in engineered systems. First, antisense gene silencing, which is the specific use of oligonucleotides to silence gene expression, was investigated. This work was followed by the investigation of bacteriophages (phages), which are viruses that are specific to bacteria, in engineered systems.
For the antisense gene silencing work, a computational approach was used to quantify the number of off-targets and to determine the effects of off-targets in prokaryotic organisms. For the organisms of
Regarding the work with phages, the disinfection rates of bacteria in the presence of phages was determined. The disinfection rates of
In addition to determining disinfection rates, the long-term bacterial growth inhibition potential was determined for a variety of phages with both Gram-negative and Gram-positive bacteria. It was determined, that on average, phages can be used to inhibit bacterial growth for up to 24 h, and that this effect was concentration dependent for various phages at specific time points. Additionally, it was found that a phage cocktail was no more effective at inhibiting bacterial growth over the long-term than the best performing phage in isolation.
Finally, for an industrial application, the use of phages to inhibit invasive
In conclusion, this dissertation improved the current methods for designing antisense gene silencing targets for prokaryotic organisms, and characterized phages from an engineering perspective. First, the current design strategy for antisense targets in prokaryotic organisms was improved through the development of an algorithm that minimized the number of off-targets. For the phage work, a framework was developed to predict the disinfection rates in terms of the initial phage and bacterial concentrations. In addition, the long-term bacterial growth inhibition potential of multiple phages was determined for several bacteria. In regard to the phage application, phages were shown to protect both final product yields and yeast concentrations during fermentation. Taken together, this work suggests that the rational design of phage treatment is possible and further work is needed to expand on this foundation.
Resumo:
Many food production methods are both economically and environmentally unsustainable. Our project investigated aquaponics, an alternative method of agriculture that could address these issues. Aquaponics combines fish and plant crop production in a symbiotic, closed-loop system. We aimed to reduce the initial and operating costs of current aquaponic systems by utilizing alternative feeds. These improvements may allow for sustainable implementation of the system in rural or developing regions. We conducted a multi-phase process to determine the most affordable and effective feed alternatives for use in an aquaponic system. At the end of two preliminary phases, soybean meal was identified as the most effective potential feed supplement. In our final phase, we constructed and tested six full-scale aquaponic systems of our own design. Data showed that soybean meal can be used to reduce operating costs and reliance on fishmeal. However, a more targeted investigation is needed to identify the optimal formulation of alternative feed blends.
Resumo:
Virtual manufacturing and design assessment increasingly involve the simulation of interacting phenomena, sic. multi-physics, an activity which is very computationally intensive. This chapter describes an attempt to address the parallel issues associated with a multi-physics simulation approach based upon a range of compatible procedures operating on one mesh using a single database - the distinct physics solvers can operate separately or coupled on sub-domains of the whole geometric space. Moreover, the finite volume unstructured mesh solvers use different discretization schemes (and, particularly, different ‘nodal’ locations and control volumes). A two-level approach to the parallelization of this simulation software is described: the code is restructured into parallel form on the basis of the mesh partitioning alone, that is, without regard to the physics. However, at run time, the mesh is partitioned to achieve a load balance, by considering the load per node/element across the whole domain. The latter of course is determined by the problem specific physics at a particular location.
Resumo:
A cross-domain workflow application may be constructed using a standard reference model such as the one by the Workflow Management Coalition (WfMC) [7] but the requirements for this type of application are inherently different from one organization to another. The existing models and systems built around them meet some but not all the requirements from all the organizations involved in a collaborative process. Furthermore the requirements change over time. This makes the applications difficult to develop and distribute. Service Oriented Architecture (SOA) based approaches such as the BPET (Business Process Execution Language) intend to provide a solution but fail to address the problems sufficiently, especially in the situations where the expectations and level of skills of the users (e.g. the participants of the processes) in different organisations are likely to be different. In this paper, we discuss a design pattern that provides a novel approach towards a solution. In the solution, business users can design the applications at a high level of abstraction: the use cases and user interactions; the designs are documented and used, together with the data and events captured later that represents the user interactions with the systems, to feed an intermediate component local to the users -the IFM (InterFace Mapper) -which bridges the gaps between the users and the systems. We discuss the main issues faced in the design and prototyping. The approach alleviates the need for re-programming with the APIs to any back-end service thus easing the development and distribution of the applications
Resumo:
In this paper, we address the use of CBR in collaboration with numerical engineering models. This collaborative combination has a particular application in engineering domains where numerical models are used. We term this domain “Case Based Engineering” (CBE), and present the general architecture of a CBE system. We define and discuss the general characteristics of CBE and the special problems which arise. These are: the handling of engineering constraints of both continuous and nominal kind; interpolation over both continuous and nominal variables, and conformability for interpolation. In order to illustrate the utility of the method proposed, and to provide practical examples of the general theory, the paper describes a practical application of the CBE architecture, known as CBE-CONVEYOR, which has been implemented by the authors.Pneumatic conveying is an important transportation technology in the solid bulks conveying industry. One of the major industry concerns is the attrition of powders and granules during pneumatic conveying. To minimize the fraction of particles during pneumatic conveying, engineers want to know what design parameters they should use in building a conveyor system. To do this, engineers often run simulations in a repetitive manner to find appropriate input parameters. CBE-Conveyor is shown to speed up conventional methods for searching for solutions, and to solve problems directly that would otherwise require considerable intervention from the engineer.
Resumo:
Information on past trends is essential to inform future predictions and underpin attribution needed to drive policy responses. It has long been recognised that sustained observations are essential for disentangling climate-driven change from other regional and local-scale anthropogenic impacts and environmental fluctuations or cycles in natural systems. This paper highlights how data rescue and re-use have contributed to the debate on climate change responses of marine biodiversity and ecosystems. It also illustrates via two case studies the re-use of old data to address new policy concerns. The case studies focus on (1) plankton, fish and benthos from the Western English Channel and (2) broad-scale and long-term studies of intertidal species around the British Isles. Case study 1 using the Marine Biological Association of the UK's English Channel data has shown the influence of climatic fluctuations on phenology (migration and breeding patterns) and has also helped to disentangle responses to fishing pressure from those driven by climate, and provided insights into ecosystem-level change in the English Channel. Case study 2 has shown recent range extensions, increases of abundance and changes in phenology (breeding patterns) of southern, warm-water intertidal species in relation to recent rapid climate change and fluctuations in northern and southern barnacle species, enabling modelling and prediction of future states. The case is made for continuing targeted sustained observations and their importance for marine management and policy development.
Resumo:
The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.
What are the local impacts of energy systems on marine ecosystem services: a systematic map protocol
Resumo:
Background: Increasing concentrations of atmospheric greenhouse gases (GHG) and its impact on the climate has resulted in many international governments committing to reduce their GHG emissions. The UK, for example, has committed to reducing its carbon emissions by 80% by 2050. Suggested ways of reaching such a target are to increase dependency on offshore wind, offshore gas and nuclear. It is not clear, however, how the construction, operation and decommissioning of these energy systems will impact marine ecosystem services, i.e. the services obtained by people from the natural environment such as food provisioning, climate regulation and cultural inspiration. Research on ecosystem service impacts associated with offshore energy technologies is still in its infancy. The objective of this review is to bolster the evidence base by firstly, recording and describing the impacts of energy technologies at the marine ecosystems and human level in a consistent and transparent way; secondly, to translate these ecosystem and human impacts into ecosystem service impacts by using a framework to ensure consistency and comparability. The output of this process will be an objective synthesis of ecosystem service impacts comprehensive enough to cover different types of energy under the same analysis and to assist in informing how the provision of ecosystem services will change under different energy provisioning scenarios. Methods: Relevant studies will be sourced using publication databases and selected using a set of selection criteria including the identification of: (i) relevant subject populations such as marine and coastal species, marine habitat types and the general public; (ii) relevant exposure types including offshore wind farms, offshore oil and gas platforms and offshore structures connected with nuclear; (iii) relevant outcomes including changes in species structure and diversity; changes in benthic, demersal and pelagic habitats; and changes in cultural services. The impacts will be synthesised and described using a systematic map. To translate these findings into ecosystem service impacts, the Common International Classification of Ecosystem Services (CICES) and Millennium Ecosystem Assessment (MEA) frameworks are used and a detailed description of the steps taken provided to ensure transparency and replicability.
Resumo:
Global warming and its link to the burning of fossil fuels has prompted many governments around the world to set legally binding greenhouse gas reduction targets which are to be partially realised through a stronger reliance on renewable (e.g. wind) and other lower carbon (i.e. natural gas and nuclear) energy commodities. The marine environment will play a key role in hosting or supporting these new energy strategies. However, it is unclear how the construction, operation and eventual decommissioning of these energy systems, and their related infrastructure, will impact the marine environment, the ecosystem services (i.e. cultural, regulating, provisioning and supporting) and in turn the benefits it provides for human well-being. This uncertainty stems from a lack of research that has synthesised into a common currency the various effects of each energy sector on marine ecosystems and the benefits humans derive from it. To address this gap, the present study reviews existing ecosystem impact studies for offshore components of nuclear, offshore wind, offshore gas and offshore oil sectors and translates them into the common language of ecosystem service impacts that can be used to evaluate current policies. The results suggest that differences exist in the way in which energy systems impact ecosystem services, with the nuclear sector having a predominantly negative impact on cultural ecosystem services; oil and gas a predominately negative impact on cultural, provisioning, regulating and supporting ecosystem services; while wind has a mix of impacts on cultural, provisioning and supporting services and an absence of studies for regulating services. This study suggests that information is still missing with regard to the full impact of these energy sectors on specific types of benefits that humans derive from the marine environment and proposes possible areas of targeted research.
Resumo:
Background: Developing complex interventions for testing in randomised controlled trials is of increasing importance in healthcare planning. There is a need for careful design of interventions for secondary prevention of coronary heart disease (CHD). It has been suggested that integrating qualitative research in the development of a complex intervention may contribute to optimising its design but there is limited evidence of this in practice. This study aims to examine the contribution of qualitative research in developing a complex intervention to improve the provision and uptake of secondary prevention of CHD within primary care in two different healthcare systems.
Methods: In four general practices, one rural and one urban, in Northern Ireland and the Republic of Ireland, patients with CHD were purposively selected. Four focus groups with patients (N = 23) and four with staff (N = 29) informed the development of the intervention by exploring how it could be tailored and integrated with current secondary prevention activities for CHD in the two healthcare settings. Following an exploratory trial the acceptability and feasibility of the intervention were discussed in four focus groups (17 patients) and 10 interviews (staff). The data were analysed using thematic analysis.
Results: Integrating qualitative research into the development of the intervention provided depth of information about the varying impact, between the two healthcare systems, of different funding and administrative arrangements, on their provision of secondary prevention and identified similar barriers of time constraints, training needs and poor patient motivation. The findings also highlighted the importance to patients of stress management, the need for which had been underestimated by the researchers. The qualitative evaluation provided depth of detail not found in evaluation questionnaires. It highlighted how the intervention needed to be more practical by minimising administration, integrating role plays into behaviour change training, providing more practical information about stress management and removing self-monitoring of lifestyle change.
Conclusion: Qualitative research is integral to developing the design detail of a complex intervention and tailoring its components to address individuals' needs in different healthcare systems. The findings highlight how qualitative research may be a valuable component of the preparation for complex interventions and their evaluation.
Resumo:
Background & Purpose: Chronic pain is a prevalent chronic condition for which the best management options rarely provide complete relief. Individuals with chronic pain with neuropathic characteristics (NC) report more severe pain and experience less relief from interventions. Little is known about current self-management practices. The purpose of this dissertation was to inform self-management of chronic pain with and without NC at the individual, health system, and policy levels using the Innovative Care for Chronic Conditions Framework. Methods: The study included a systematic search and review and cross-sectional survey. The review evaluated the evidence for chronic pain self-management interventions and explored the role of health care providers in supporting self-management. The survey was mailed to 8,000 randomly selected Canadians in November 2011, and non-respondents were followed-up in May 2012. Screening questions were included for both chronic pain and NC. The questionnaire captured pain descriptions, self-management strategies, and self-management barriers, and facilitators. Results: Findings of the review suggested that self-management interventions are effective in improving pain and health outcomes. Health care professionals provided self-management advice and referred individuals to self-management interventions. The questionnaire was completed by 1,520 Canadians. Those with chronic pain (n=710) identified primary care physicians as the most helpful pain management professional. Overall, use of non-pharmaceutical medical self-management strategies was low. While use positive emotional self-management strategies was high, individuals with NC were more likely to use negative emotional self-management strategies compared to those without NC. Multiple self-management barriers and facilitators were identified, however those with NC were more likely than those without NC to experience low self-efficacy, depression and severe pain which may impair the ability to self-management. Conclusions: Health care professionals have the opportunity to improve chronic pain outcomes by providing self-management advice, referring to self-management interventions, and addressing self-management barriers and facilitators. Individuals with NC may require additional health services to address their greater self-management challenges, and further research is needed to identify non-pharmaceutical interventions effective in relieving chronic pain with NC. Public policy is needed to facilitate health systems in providing long-term self-management support for individuals with chronic pain.